diff --git a/spine-libgdx/spine-libgdx/src/com/esotericsoftware/spine/Bone.java b/spine-libgdx/spine-libgdx/src/com/esotericsoftware/spine/Bone.java index 5c6d714b2..2f9d6e561 100644 --- a/spine-libgdx/spine-libgdx/src/com/esotericsoftware/spine/Bone.java +++ b/spine-libgdx/spine-libgdx/src/com/esotericsoftware/spine/Bone.java @@ -141,10 +141,10 @@ public class Bone implements Updatable { do { float cos = cosDeg(parent.appliedRotation), sin = sinDeg(parent.appliedRotation); float temp = pa * cos + pb * sin; - pb = pa * -sin + pb * cos; + pb = pb * cos - pa * sin; pa = temp; temp = pc * cos + pd * sin; - pd = pc * -sin + pd * cos; + pd = pd * cos - pc * sin; pc = temp; if (!parent.data.inheritRotation) break; @@ -160,22 +160,22 @@ public class Bone implements Updatable { pc = 0; pd = 1; do { - float r = parent.appliedRotation, cos = cosDeg(r), sin = sinDeg(r); + float cos = cosDeg(parent.appliedRotation), sin = sinDeg(parent.appliedRotation); float psx = parent.appliedScaleX, psy = parent.appliedScaleY; - float za = cos * psx, zb = -sin * psy, zc = sin * psx, zd = cos * psy; + float za = cos * psx, zb = sin * psy, zc = sin * psx, zd = cos * psy; float temp = pa * za + pb * zc; - pb = pa * zb + pb * zd; + pb = pb * zd - pa * zb; pa = temp; temp = pc * za + pd * zc; - pd = pc * zb + pd * zd; + pd = pd * zd - pc * zb; pc = temp; if (psx >= 0) sin = -sin; temp = pa * cos + pb * sin; - pb = pa * -sin + pb * cos; + pb = pb * cos - pa * sin; pa = temp; temp = pc * cos + pd * sin; - pd = pc * -sin + pd * cos; + pd = pd * cos - pc * sin; pc = temp; if (!parent.data.inheritScale) break; @@ -202,64 +202,6 @@ public class Bone implements Updatable { } } - /** Computes the local transform from the world transform. This can be useful to perform processing on the local transform - * after the world transform has been modified directly (eg, by a constraint). - *

- * Some redundant information is lost by the world transform, such as -1,-1 scale versus 180 rotation. The computed local - * transform values may differ from the original values but are functionally the same. */ - public void updateLocalTransform () { - Bone parent = this.parent; - if (parent == null) { - x = worldX; - y = worldY; - rotation = atan2(c, a) * radDeg; - scaleX = (float)Math.sqrt(a * a + c * c); - scaleY = (float)Math.sqrt(b * b + d * d); - float det = a * d - b * c; - shearX = 0; - shearY = atan2(a * b + c * d, det) * radDeg; - return; - } - float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; - float pid = 1 / (pa * pd - pb * pc); - float dx = worldX - parent.worldX, dy = worldY - parent.worldY; - x = (dx * pd * pid - dy * pb * pid); - y = (dy * pa * pid - dx * pc * pid); - float ia = pid * pd; - float id = pid * pa; - float ib = pid * pb; - float ic = pid * pc; - float ra = ia * a - ib * c; - float rb = ia * b - ib * d; - float rc = id * c - ic * a; - float rd = id * d - ic * b; - shearX = 0; - scaleX = (float)Math.sqrt(ra * ra + rc * rc); - if (scaleX > 0.0001f) { - float det = ra * rd - rb * rc; - scaleY = det / scaleX; - shearY = atan2(ra * rb + rc * rd, det) * radDeg; - rotation = atan2(rc, ra) * radDeg; - } else { - scaleX = 0; - scaleY = (float)Math.sqrt(rb * rb + rd * rd); - shearY = 0; - rotation = 90 - atan2(rd, rb) * radDeg; - } - appliedRotation = rotation; - appliedScaleX = scaleX; - appliedScaleY = scaleY; - } - - public void rotateWorld (float degrees) { - float a = this.a, b = this.b, c = this.c, d = this.d; - float cos = cosDeg(degrees), sin = sinDeg(degrees); - this.a = cos * a - sin * c; - this.b = cos * b - sin * d; - this.c = sin * a + cos * c; - this.d = sin * b + cos * d; - } - public void setToSetupPose () { BoneData data = this.data; x = data.x; @@ -406,6 +348,78 @@ public class Bone implements Updatable { return (float)Math.sqrt(c * c + d * d) * worldSignY; } + public float worldToLocalRotationX () { + Bone parent = this.parent; + if (parent == null) return rotation; + float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, a = this.a, c = this.c; + return atan2(pa * c - pc * a, pd * a - pb * c) * radDeg; + } + + public float worldToLocalRotationY () { + Bone parent = this.parent; + if (parent == null) return rotation; + float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, b = this.b, d = this.d; + return atan2(pa * d - pc * b, pd * b - pb * d) * radDeg; + } + + public void rotateWorld (float degrees) { + float a = this.a, b = this.b, c = this.c, d = this.d; + float cos = cosDeg(degrees), sin = sinDeg(degrees); + this.a = cos * a - sin * c; + this.b = cos * b - sin * d; + this.c = sin * a + cos * c; + this.d = sin * b + cos * d; + } + + /** Computes the local transform from the world transform. This can be useful to perform processing on the local transform + * after the world transform has been modified directly (eg, by a constraint). + *

+ * Some redundant information is lost by the world transform, such as -1,-1 scale versus 180 rotation. The computed local + * transform values may differ from the original values but are functionally the same. */ + public void updateLocalTransform () { + Bone parent = this.parent; + if (parent == null) { + x = worldX; + y = worldY; + rotation = atan2(c, a) * radDeg; + scaleX = (float)Math.sqrt(a * a + c * c); + scaleY = (float)Math.sqrt(b * b + d * d); + float det = a * d - b * c; + shearX = 0; + shearY = atan2(a * b + c * d, det) * radDeg; + return; + } + float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; + float pid = 1 / (pa * pd - pb * pc); + float dx = worldX - parent.worldX, dy = worldY - parent.worldY; + x = (dx * pd * pid - dy * pb * pid); + y = (dy * pa * pid - dx * pc * pid); + float ia = pid * pd; + float id = pid * pa; + float ib = pid * pb; + float ic = pid * pc; + float ra = ia * a - ib * c; + float rb = ia * b - ib * d; + float rc = id * c - ic * a; + float rd = id * d - ic * b; + shearX = 0; + scaleX = (float)Math.sqrt(ra * ra + rc * rc); + if (scaleX > 0.0001f) { + float det = ra * rd - rb * rc; + scaleY = det / scaleX; + shearY = atan2(ra * rb + rc * rd, det) * radDeg; + rotation = atan2(rc, ra) * radDeg; + } else { + scaleX = 0; + scaleY = (float)Math.sqrt(rb * rb + rd * rd); + shearY = 0; + rotation = 90 - atan2(rd, rb) * radDeg; + } + appliedRotation = rotation; + appliedScaleX = scaleX; + appliedScaleY = scaleY; + } + public Matrix3 getWorldTransform (Matrix3 worldTransform) { if (worldTransform == null) throw new IllegalArgumentException("worldTransform cannot be null."); float[] val = worldTransform.val;