/****************************************************************************** * Spine Runtimes Software License * Version 2.3 * * Copyright (c) 2013-2015, Esoteric Software * All rights reserved. * * You are granted a perpetual, non-exclusive, non-sublicensable and * non-transferable license to use, install, execute and perform the Spine * Runtimes Software (the "Software") and derivative works solely for personal * or internal use. Without the written permission of Esoteric Software (see * Section 2 of the Spine Software License Agreement), you may not (a) modify, * translate, adapt or otherwise create derivative works, improvements of the * Software or develop new applications using the Software or (b) remove, * delete, alter or obscure any trademarks or any copyright, trademark, patent * or other intellectual property or proprietary rights notices on or in the * Software, including any copy thereof. Redistributions in binary or source * form must include this license and terms. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; using System.Collections.Generic; namespace Spine { public class IkConstraint : IUpdatable { internal IkConstraintData data; internal ExposedList bones = new ExposedList(); internal Bone target; internal int bendDirection; internal float mix; public IkConstraintData Data { get { return data; } } public ExposedList Bones { get { return bones; } } public Bone Target { get { return target; } set { target = value; } } public int BendDirection { get { return bendDirection; } set { bendDirection = value; } } public float Mix { get { return mix; } set { mix = value; } } public IkConstraint (IkConstraintData data, Skeleton skeleton) { if (data == null) throw new ArgumentNullException("data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton cannot be null."); this.data = data; mix = data.mix; bendDirection = data.bendDirection; bones = new ExposedList(data.bones.Count); foreach (BoneData boneData in data.bones) bones.Add(skeleton.FindBone(boneData.name)); target = skeleton.FindBone(data.target.name); } public void Update () { Apply(); } public void Apply () { Bone target = this.target; ExposedList bones = this.bones; switch (bones.Count) { case 1: Apply(bones.Items[0], target.worldX, target.worldY, mix); break; case 2: Apply(bones.Items[0], bones.Items[1], target.worldX, target.worldY, bendDirection, mix); break; } } override public String ToString () { return data.name; } /// Adjusts the bone rotation so the tip is as close to the target position as possible. The target is specified /// in the world coordinate system. static public void Apply (Bone bone, float targetX, float targetY, float alpha) { float parentRotation = bone.parent == null ? 0 : bone.parent.WorldRotationX; float rotation = bone.rotation; float rotationIK = MathUtils.Atan2(targetY - bone.worldY, targetX - bone.worldX) * MathUtils.radDeg - parentRotation; if ((bone.worldSignX != bone.worldSignY) != (bone.skeleton.flipX != (bone.skeleton.flipY != Bone.yDown))) rotationIK = 360 - rotationIK; if (rotationIK > 180) rotationIK -= 360; else if (rotationIK < -180) rotationIK += 360; bone.UpdateWorldTransform(bone.x, bone.y, rotation + (rotationIK - rotation) * alpha, bone.appliedScaleX, bone.appliedScaleY); } /// Adjusts the parent and child bone rotations so the tip of the child is as close to the target position as /// possible. The target is specified in the world coordinate system. /// A direct descendant of the parent bone. static public void Apply (Bone parent, Bone child, float targetX, float targetY, int bendDir, float alpha) { if (alpha == 0) return; float px = parent.x, py = parent.y, psx = parent.appliedScaleX, psy = parent.appliedScaleY; int os1, os2, s2; if (psx < 0) { psx = -psx; os1 = 180; s2 = -1; } else { os1 = 0; s2 = 1; } if (psy < 0) { psy = -psy; s2 = -s2; } float cx = child.x, cy = child.y, csx = child.appliedScaleX; bool u = Math.Abs(psx - psy) <= 0.0001f; if (!u && cy != 0) { child.worldX = parent.a * cx + parent.worldX; child.worldY = parent.c * cx + parent.worldY; cy = 0; } if (csx < 0) { csx = -csx; os2 = 180; } else os2 = 0; Bone pp = parent.parent; float tx, ty, dx, dy; if (pp == null) { tx = targetX - px; ty = targetY - py; dx = child.worldX - px; dy = child.worldY - py; } else { float a = pp.a, b = pp.b, c = pp.c, d = pp.d, invDet = 1 / (a * d - b * c); float wx = pp.worldX, wy = pp.worldY, x = targetX - wx, y = targetY - wy; tx = (x * d - y * b) * invDet - px; ty = (y * a - x * c) * invDet - py; x = child.worldX - wx; y = child.worldY - wy; dx = (x * d - y * b) * invDet - px; dy = (y * a - x * c) * invDet - py; } float l1 = (float)Math.Sqrt(dx * dx + dy * dy), l2 = child.data.length * csx, a1, a2; if (u) { l2 *= psx; float cos = (tx * tx + ty * ty - l1 * l1 - l2 * l2) / (2 * l1 * l2); if (cos < -1) cos = -1; else if (cos > 1) cos = 1; a2 = (float)Math.Acos(cos) * bendDir; float a = l1 + l2 * cos, o = l2 * MathUtils.Sin(a2); a1 = MathUtils.Atan2(ty * a - tx * o, tx * a + ty * o); } else { float a = psx * l2, b = psy * l2, ta = MathUtils.Atan2(ty, tx); float aa = a * a, bb = b * b, ll = l1 * l1, dd = tx * tx + ty * ty; float c0 = bb * ll + aa * dd - aa * bb, c1 = -2 * bb * l1, c2 = bb - aa; float d = c1 * c1 - 4 * c2 * c0; if (d >= 0) { float q = (float)Math.Sqrt(d); if (c1 < 0) q = -q; q = -(c1 + q) / 2; float r0 = q / c2, r1 = c0 / q; float r = Math.Abs(r0) < Math.Abs(r1) ? r0 : r1; if (r * r <= dd) { float y1 = (float)Math.Sqrt(dd - r * r) * bendDir; a1 = ta - MathUtils.Atan2(y1, r); a2 = MathUtils.Atan2(y1 / psy, (r - l1) / psx); goto outer; } } float minAngle = 0, minDist = float.MaxValue, minX = 0, minY = 0; float maxAngle = 0, maxDist = 0, maxX = 0, maxY = 0; float x = l1 + a, dist = x * x; if (dist > maxDist) { maxAngle = 0; maxDist = dist; maxX = x; } x = l1 - a; dist = x * x; if (dist < minDist) { minAngle = MathUtils.PI; minDist = dist; minX = x; } float angle = (float)Math.Acos(-a * l1 / (aa - bb)); x = a * MathUtils.Cos(angle) + l1; float y = b * MathUtils.Sin(angle); dist = x * x + y * y; if (dist < minDist) { minAngle = angle; minDist = dist; minX = x; minY = y; } if (dist > maxDist) { maxAngle = angle; maxDist = dist; maxX = x; maxY = y; } if (dd <= (minDist + maxDist) / 2) { a1 = ta - MathUtils.Atan2(minY * bendDir, minX); a2 = minAngle * bendDir; } else { a1 = ta - MathUtils.Atan2(maxY * bendDir, maxX); a2 = maxAngle * bendDir; } } outer: float os = MathUtils.Atan2(cy, cx) * s2; a1 = (a1 - os) * MathUtils.radDeg + os1; a2 = (a2 + os) * MathUtils.radDeg * s2 + os2; if (a1 > 180) a1 -= 360; else if (a1 < -180) a1 += 360; if (a2 > 180) a2 -= 360; else if (a2 < -180) a2 += 360; float rotation = parent.rotation; parent.UpdateWorldTransform(px, py, rotation + (a1 - rotation) * alpha, parent.appliedScaleX, parent.appliedScaleY); rotation = child.rotation; child.UpdateWorldTransform(cx, cy, rotation + (a2 - rotation) * alpha, child.appliedScaleX, child.appliedScaleY); } } }