/****************************************************************************** * Spine Runtimes Software License * Version 2.1 * * Copyright (c) 2013, Esoteric Software * All rights reserved. * * You are granted a perpetual, non-exclusive, non-sublicensable and * non-transferable license to install, execute and perform the Spine Runtimes * Software (the "Software") solely for internal use. Without the written * permission of Esoteric Software (typically granted by licensing Spine), you * may not (a) modify, translate, adapt or otherwise create derivative works, * improvements of the Software or develop new applications using the Software * or (b) remove, delete, alter or obscure any trademarks or any copyright, * trademark, patent or other intellectual property or proprietary rights * notices on or in the Software, including any copy thereof. Redistributions * in binary or source form must include this license and terms. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL ESOTERIC SOFTARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ package com.esotericsoftware.spine; import com.badlogic.gdx.graphics.Color; import com.badlogic.gdx.math.MathUtils; import com.badlogic.gdx.utils.Array; import com.badlogic.gdx.utils.FloatArray; import com.esotericsoftware.spine.attachments.Attachment; public class Animation { final String name; private final Array timelines; private float duration; public Animation (String name, Array timelines, float duration) { if (name == null) throw new IllegalArgumentException("name cannot be null."); if (timelines == null) throw new IllegalArgumentException("timelines cannot be null."); this.name = name; this.timelines = timelines; this.duration = duration; } public Array getTimelines () { return timelines; } /** Returns the duration of the animation in seconds. */ public float getDuration () { return duration; } public void setDuration (float duration) { this.duration = duration; } /** Poses the skeleton at the specified time for this animation. * @param lastTime The last time the animation was applied. * @param events Any triggered events are added. */ public void apply (Skeleton skeleton, float lastTime, float time, boolean loop, Array events) { if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); if (loop && duration != 0) { time %= duration; lastTime %= duration; } Array timelines = this.timelines; for (int i = 0, n = timelines.size; i < n; i++) timelines.get(i).apply(skeleton, lastTime, time, events, 1); } /** Poses the skeleton at the specified time for this animation mixed with the current pose. * @param lastTime The last time the animation was applied. * @param events Any triggered events are added. * @param alpha The amount of this animation that affects the current pose. */ public void mix (Skeleton skeleton, float lastTime, float time, boolean loop, Array events, float alpha) { if (skeleton == null) throw new IllegalArgumentException("skeleton cannot be null."); if (loop && duration != 0) { lastTime %= duration; time %= duration; } Array timelines = this.timelines; for (int i = 0, n = timelines.size; i < n; i++) timelines.get(i).apply(skeleton, lastTime, time, events, alpha); } public String getName () { return name; } public String toString () { return name; } /** @param target After the first and before the last value. * @return index of first value greater than the target. */ static int binarySearch (float[] values, float target, int step) { int low = 0; int high = values.length / step - 2; if (high == 0) return step; int current = high >>> 1; while (true) { if (values[(current + 1) * step] <= target) low = current + 1; else high = current; if (low == high) return (low + 1) * step; current = (low + high) >>> 1; } } /** @param target After the first and before the last value. * @return index of first value greater than the target. */ static int binarySearch (float[] values, float target) { int low = 0; int high = values.length - 2; if (high == 0) return 1; int current = high >>> 1; while (true) { if (values[current + 1] <= target) low = current + 1; else high = current; if (low == high) return low + 1; current = (low + high) >>> 1; } } static int linearSearch (float[] values, float target, int step) { for (int i = 0, last = values.length - step; i <= last; i += step) if (values[i] > target) return i; return -1; } static public interface Timeline { /** Sets the value(s) for the specified time. * @param events May be null to not collect fired events. */ public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha); } /** Base class for frames that use an interpolation bezier curve. */ abstract static public class CurveTimeline implements Timeline { static public final float LINEAR = 0, STEPPED = 1, BEZIER = 2; static private final int BEZIER_SEGMENTS = 10, BEZIER_SIZE = BEZIER_SEGMENTS * 2 - 1; private final float[] curves; // type, x, y, ... public CurveTimeline (int frameCount) { curves = new float[(frameCount - 1) * BEZIER_SIZE]; } public int getFrameCount () { return curves.length / BEZIER_SIZE + 1; } public void setLinear (int frameIndex) { curves[frameIndex * BEZIER_SIZE] = LINEAR; } public void setStepped (int frameIndex) { curves[frameIndex * BEZIER_SIZE] = STEPPED; } public float getCurveType (int frameIndex) { int index = frameIndex * BEZIER_SIZE; if (index == curves.length) return LINEAR; float type = curves[index]; if (type == LINEAR) return LINEAR; if (type == STEPPED) return STEPPED; return BEZIER; } /** Sets the control handle positions for an interpolation bezier curve used to transition from this keyframe to the next. * cx1 and cx2 are from 0 to 1, representing the percent of time between the two keyframes. cy1 and cy2 are the percent of * the difference between the keyframe's values. */ public void setCurve (int frameIndex, float cx1, float cy1, float cx2, float cy2) { float subdiv1 = 1f / BEZIER_SEGMENTS, subdiv2 = subdiv1 * subdiv1, subdiv3 = subdiv2 * subdiv1; float pre1 = 3 * subdiv1, pre2 = 3 * subdiv2, pre4 = 6 * subdiv2, pre5 = 6 * subdiv3; float tmp1x = -cx1 * 2 + cx2, tmp1y = -cy1 * 2 + cy2, tmp2x = (cx1 - cx2) * 3 + 1, tmp2y = (cy1 - cy2) * 3 + 1; float dfx = cx1 * pre1 + tmp1x * pre2 + tmp2x * subdiv3, dfy = cy1 * pre1 + tmp1y * pre2 + tmp2y * subdiv3; float ddfx = tmp1x * pre4 + tmp2x * pre5, ddfy = tmp1y * pre4 + tmp2y * pre5; float dddfx = tmp2x * pre5, dddfy = tmp2y * pre5; int i = frameIndex * BEZIER_SIZE; float[] curves = this.curves; curves[i++] = BEZIER; float x = dfx, y = dfy; for (int n = i + BEZIER_SIZE - 1; i < n; i += 2) { curves[i] = x; curves[i + 1] = y; dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; x += dfx; y += dfy; } } public float getCurvePercent (int frameIndex, float percent) { float[] curves = this.curves; int i = frameIndex * BEZIER_SIZE; float type = curves[i]; if (type == LINEAR) return percent; if (type == STEPPED) return 0; i++; float x = 0; for (int start = i, n = i + BEZIER_SIZE - 1; i < n; i += 2) { x = curves[i]; if (x >= percent) { float prevX, prevY; if (i == start) { prevX = 0; prevY = 0; } else { prevX = curves[i - 2]; prevY = curves[i - 1]; } return prevY + (curves[i + 1] - prevY) * (percent - prevX) / (x - prevX); } } float y = curves[i - 1]; return y + (1 - y) * (percent - x) / (1 - x); // Last point is 1,1. } } static public class RotateTimeline extends CurveTimeline { static private final int PREV_FRAME_TIME = -2; static private final int FRAME_VALUE = 1; int boneIndex; private final float[] frames; // time, angle, ... public RotateTimeline (int frameCount) { super(frameCount); frames = new float[frameCount << 1]; } public void setBoneIndex (int boneIndex) { this.boneIndex = boneIndex; } public int getBoneIndex () { return boneIndex; } public float[] getFrames () { return frames; } /** Sets the time and angle of the specified keyframe. */ public void setFrame (int frameIndex, float time, float angle) { frameIndex *= 2; frames[frameIndex] = time; frames[frameIndex + 1] = angle; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. Bone bone = skeleton.bones.get(boneIndex); if (time >= frames[frames.length - 2]) { // Time is after last frame. float amount = bone.data.rotation + frames[frames.length - 1] - bone.rotation; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; bone.rotation += amount * alpha; return; } // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time, 2); float prevFrameValue = frames[frameIndex - 1]; float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1); percent = getCurvePercent((frameIndex >> 1) - 1, percent); float amount = frames[frameIndex + FRAME_VALUE] - prevFrameValue; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; amount = bone.data.rotation + (prevFrameValue + amount * percent) - bone.rotation; while (amount > 180) amount -= 360; while (amount < -180) amount += 360; bone.rotation += amount * alpha; } } static public class TranslateTimeline extends CurveTimeline { static final int PREV_FRAME_TIME = -3; static final int FRAME_X = 1; static final int FRAME_Y = 2; int boneIndex; final float[] frames; // time, x, y, ... public TranslateTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * 3]; } public void setBoneIndex (int boneIndex) { this.boneIndex = boneIndex; } public int getBoneIndex () { return boneIndex; } public float[] getFrames () { return frames; } /** Sets the time and value of the specified keyframe. */ public void setFrame (int frameIndex, float time, float x, float y) { frameIndex *= 3; frames[frameIndex] = time; frames[frameIndex + 1] = x; frames[frameIndex + 2] = y; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. Bone bone = skeleton.bones.get(boneIndex); if (time >= frames[frames.length - 3]) { // Time is after last frame. bone.x += (bone.data.x + frames[frames.length - 2] - bone.x) * alpha; bone.y += (bone.data.y + frames[frames.length - 1] - bone.y) * alpha; return; } // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time, 3); float prevFrameX = frames[frameIndex - 2]; float prevFrameY = frames[frameIndex - 1]; float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1); percent = getCurvePercent(frameIndex / 3 - 1, percent); bone.x += (bone.data.x + prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent - bone.x) * alpha; bone.y += (bone.data.y + prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent - bone.y) * alpha; } } static public class ScaleTimeline extends TranslateTimeline { public ScaleTimeline (int frameCount) { super(frameCount); } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. Bone bone = skeleton.bones.get(boneIndex); if (time >= frames[frames.length - 3]) { // Time is after last frame. bone.scaleX += (bone.data.scaleX - 1 + frames[frames.length - 2] - bone.scaleX) * alpha; bone.scaleY += (bone.data.scaleY - 1 + frames[frames.length - 1] - bone.scaleY) * alpha; return; } // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time, 3); float prevFrameX = frames[frameIndex - 2]; float prevFrameY = frames[frameIndex - 1]; float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1); percent = getCurvePercent(frameIndex / 3 - 1, percent); bone.scaleX += (bone.data.scaleX - 1 + prevFrameX + (frames[frameIndex + FRAME_X] - prevFrameX) * percent - bone.scaleX) * alpha; bone.scaleY += (bone.data.scaleY - 1 + prevFrameY + (frames[frameIndex + FRAME_Y] - prevFrameY) * percent - bone.scaleY) * alpha; } } static public class ColorTimeline extends CurveTimeline { static private final int PREV_FRAME_TIME = -5; static private final int FRAME_R = 1; static private final int FRAME_G = 2; static private final int FRAME_B = 3; static private final int FRAME_A = 4; int slotIndex; private final float[] frames; // time, r, g, b, a, ... public ColorTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * 5]; } public void setSlotIndex (int slotIndex) { this.slotIndex = slotIndex; } public int getSlotIndex () { return slotIndex; } public float[] getFrames () { return frames; } /** Sets the time and value of the specified keyframe. */ public void setFrame (int frameIndex, float time, float r, float g, float b, float a) { frameIndex *= 5; frames[frameIndex] = time; frames[frameIndex + 1] = r; frames[frameIndex + 2] = g; frames[frameIndex + 3] = b; frames[frameIndex + 4] = a; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. float r, g, b, a; if (time >= frames[frames.length - 5]) { // Time is after last frame. int i = frames.length - 1; r = frames[i - 3]; g = frames[i - 2]; b = frames[i - 1]; a = frames[i]; } else { // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time, 5); float prevFrameR = frames[frameIndex - 4]; float prevFrameG = frames[frameIndex - 3]; float prevFrameB = frames[frameIndex - 2]; float prevFrameA = frames[frameIndex - 1]; float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1); percent = getCurvePercent(frameIndex / 5 - 1, percent); r = prevFrameR + (frames[frameIndex + FRAME_R] - prevFrameR) * percent; g = prevFrameG + (frames[frameIndex + FRAME_G] - prevFrameG) * percent; b = prevFrameB + (frames[frameIndex + FRAME_B] - prevFrameB) * percent; a = prevFrameA + (frames[frameIndex + FRAME_A] - prevFrameA) * percent; } Color color = skeleton.slots.get(slotIndex).color; if (alpha < 1) color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha); else color.set(r, g, b, a); } } static public class AttachmentTimeline implements Timeline { int slotIndex; private final float[] frames; // time, ... private final String[] attachmentNames; public AttachmentTimeline (int frameCount) { frames = new float[frameCount]; attachmentNames = new String[frameCount]; } public int getFrameCount () { return frames.length; } public int getSlotIndex () { return slotIndex; } public void setSlotIndex (int slotIndex) { this.slotIndex = slotIndex; } public float[] getFrames () { return frames; } public String[] getAttachmentNames () { return attachmentNames; } /** Sets the time and value of the specified keyframe. */ public void setFrame (int frameIndex, float time, String attachmentName) { frames[frameIndex] = time; attachmentNames[frameIndex] = attachmentName; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) { if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0); return; } else if (lastTime > time) // lastTime = -1; int frameIndex = (time >= frames[frames.length - 1] ? frames.length : binarySearch(frames, time)) - 1; if (frames[frameIndex] <= lastTime) return; String attachmentName = attachmentNames[frameIndex]; skeleton.slots.get(slotIndex).setAttachment( attachmentName == null ? null : skeleton.getAttachment(slotIndex, attachmentName)); } } static public class EventTimeline implements Timeline { private final float[] frames; // time, ... private final Event[] events; public EventTimeline (int frameCount) { frames = new float[frameCount]; events = new Event[frameCount]; } public int getFrameCount () { return frames.length; } public float[] getFrames () { return frames; } public Event[] getEvents () { return events; } /** Sets the time of the specified keyframe. */ public void setFrame (int frameIndex, float time, Event event) { frames[frameIndex] = time; events[frameIndex] = event; } /** Fires events for frames > lastTime and <= time. */ public void apply (Skeleton skeleton, float lastTime, float time, Array firedEvents, float alpha) { if (firedEvents == null) return; float[] frames = this.frames; int frameCount = frames.length; if (lastTime > time) { // Fire events after last time for looped animations. apply(skeleton, lastTime, Integer.MAX_VALUE, firedEvents, alpha); lastTime = -1f; } else if (lastTime >= frames[frameCount - 1]) // Last time is after last frame. return; if (time < frames[0]) return; // Time is before first frame. int frameIndex; if (lastTime < frames[0]) frameIndex = 0; else { frameIndex = binarySearch(frames, lastTime); float frame = frames[frameIndex]; while (frameIndex > 0) { // Fire multiple events with the same frame. if (frames[frameIndex - 1] != frame) break; frameIndex--; } } for (; frameIndex < frameCount && time >= frames[frameIndex]; frameIndex++) firedEvents.add(events[frameIndex]); } } static public class DrawOrderTimeline implements Timeline { private final float[] frames; // time, ... private final int[][] drawOrders; public DrawOrderTimeline (int frameCount) { frames = new float[frameCount]; drawOrders = new int[frameCount][]; } public int getFrameCount () { return frames.length; } public float[] getFrames () { return frames; } public int[][] getDrawOrders () { return drawOrders; } /** Sets the time of the specified keyframe. * @param drawOrder May be null to use bind pose draw order. */ public void setFrame (int frameIndex, float time, int[] drawOrder) { frames[frameIndex] = time; drawOrders[frameIndex] = drawOrder; } public void apply (Skeleton skeleton, float lastTime, float time, Array firedEvents, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. int frameIndex; if (time >= frames[frames.length - 1]) // Time is after last frame. frameIndex = frames.length - 1; else frameIndex = binarySearch(frames, time) - 1; Array drawOrder = skeleton.drawOrder; Array slots = skeleton.slots; int[] drawOrderToSetupIndex = drawOrders[frameIndex]; if (drawOrderToSetupIndex == null) System.arraycopy(slots.items, 0, drawOrder.items, 0, slots.size); else { for (int i = 0, n = drawOrderToSetupIndex.length; i < n; i++) drawOrder.set(i, slots.get(drawOrderToSetupIndex[i])); } } } static public class FfdTimeline extends CurveTimeline { private final float[] frames; // time, ... private final float[][] frameVertices; int slotIndex; Attachment attachment; public FfdTimeline (int frameCount) { super(frameCount); frames = new float[frameCount]; frameVertices = new float[frameCount][]; } public void setSlotIndex (int slotIndex) { this.slotIndex = slotIndex; } public int getSlotIndex () { return slotIndex; } public void setAttachment (Attachment attachment) { this.attachment = attachment; } public Attachment getAttachment () { return attachment; } public float[] getFrames () { return frames; } public float[][] getVertices () { return frameVertices; } /** Sets the time of the specified keyframe. */ public void setFrame (int frameIndex, float time, float[] vertices) { frames[frameIndex] = time; frameVertices[frameIndex] = vertices; } public void apply (Skeleton skeleton, float lastTime, float time, Array firedEvents, float alpha) { Slot slot = skeleton.slots.get(slotIndex); if (slot.getAttachment() != attachment) return; float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. float[][] frameVertices = this.frameVertices; int vertexCount = frameVertices[0].length; FloatArray verticesArray = slot.getAttachmentVertices(); if (verticesArray.size != vertexCount) alpha = 1; // Don't mix from uninitialized slot vertices. verticesArray.size = 0; verticesArray.ensureCapacity(vertexCount); verticesArray.size = vertexCount; float[] vertices = verticesArray.items; if (time >= frames[frames.length - 1]) { // Time is after last frame. float[] lastVertices = frameVertices[frames.length - 1]; if (alpha < 1) { for (int i = 0; i < vertexCount; i++) vertices[i] += (lastVertices[i] - vertices[i]) * alpha; } else System.arraycopy(lastVertices, 0, vertices, 0, vertexCount); return; } // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time); float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex - 1] - frameTime), 0, 1); percent = getCurvePercent(frameIndex - 1, percent); float[] prevVertices = frameVertices[frameIndex - 1]; float[] nextVertices = frameVertices[frameIndex]; if (alpha < 1) { for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] += (prev + (nextVertices[i] - prev) * percent - vertices[i]) * alpha; } } else { for (int i = 0; i < vertexCount; i++) { float prev = prevVertices[i]; vertices[i] = prev + (nextVertices[i] - prev) * percent; } } } } static public class IkConstraintTimeline extends CurveTimeline { static private final int PREV_FRAME_TIME = -3; static private final int FRAME_MIX = 1; static private final int FRAME_BEND_DIRECTION = 2; int ikConstraintIndex; private final float[] frames; // time, mix, bendDirection, ... public IkConstraintTimeline (int frameCount) { super(frameCount); frames = new float[frameCount * 3]; } public void setIkConstraintIndex (int ikConstraint) { this.ikConstraintIndex = ikConstraint; } public int getIkConstraintIndex () { return ikConstraintIndex; } public float[] getFrames () { return frames; } /** Sets the time, mix and bend direction of the specified keyframe. */ public void setFrame (int frameIndex, float time, float mix, int bendDirection) { frameIndex *= 3; frames[frameIndex] = time; frames[frameIndex + 1] = mix; frames[frameIndex + 2] = bendDirection; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) return; // Time is before first frame. IkConstraint ikConstraint = skeleton.ikConstraints.get(ikConstraintIndex); if (time >= frames[frames.length - 3]) { // Time is after last frame. ikConstraint.mix += (frames[frames.length - 2] - ikConstraint.mix) * alpha; ikConstraint.bendDirection = (int)frames[frames.length - 1]; return; } // Interpolate between the previous frame and the current frame. int frameIndex = binarySearch(frames, time, 3); float prevFrameMix = frames[frameIndex - 2]; float frameTime = frames[frameIndex]; float percent = MathUtils.clamp(1 - (time - frameTime) / (frames[frameIndex + PREV_FRAME_TIME] - frameTime), 0, 1); percent = getCurvePercent(frameIndex / 3 - 1, percent); float mix = prevFrameMix + (frames[frameIndex + FRAME_MIX] - prevFrameMix) * percent; ikConstraint.mix += (mix - ikConstraint.mix) * alpha; ikConstraint.bendDirection = (int)frames[frameIndex + FRAME_BEND_DIRECTION]; } } static public class FlipXTimeline implements Timeline { private final float[] frames; // time, flip, ... public FlipXTimeline (int frameCount) { frames = new float[frameCount << 1]; } public int getFrameCount () { return frames.length >> 1; } public float[] getFrames () { return frames; } /** Sets the time and value of the specified keyframe. */ public void setFrame (int frameIndex, float time, boolean flip) { frameIndex *= 2; frames[frameIndex] = time; frames[frameIndex + 1] = flip ? 1 : 0; } public void apply (Skeleton skeleton, float lastTime, float time, Array events, float alpha) { float[] frames = this.frames; if (time < frames[0]) { if (lastTime > time) apply(skeleton, lastTime, Integer.MAX_VALUE, null, 0); return; } else if (lastTime > time) // lastTime = -1; int frameIndex = (time >= frames[frames.length - 2] ? frames.length : binarySearch(frames, time, 2)) - 2; if (frames[frameIndex] <= lastTime) return; flip(skeleton, frames[frameIndex + 1] != 0); } protected void flip (Skeleton skeleton, boolean flip) { skeleton.setFlipX(flip); } } static public class FlipYTimeline extends FlipXTimeline { public FlipYTimeline (int frameCount) { super(frameCount); } protected void flip (Skeleton skeleton, boolean flip) { skeleton.setFlipY(flip); } } }