/****************************************************************************** * Spine Runtimes Software License v2.5 * * Copyright (c) 2013-2016, Esoteric Software * All rights reserved. * * You are granted a perpetual, non-exclusive, non-sublicensable, and * non-transferable license to use, install, execute, and perform the Spine * Runtimes software and derivative works solely for personal or internal * use. Without the written permission of Esoteric Software (see Section 2 of * the Spine Software License Agreement), you may not (a) modify, translate, * adapt, or develop new applications using the Spine Runtimes or otherwise * create derivative works or improvements of the Spine Runtimes or (b) remove, * delete, alter, or obscure any trademarks or any copyright, trademark, patent, * or other intellectual property or proprietary rights notices on or in the * Software, including any copy thereof. Redistributions in binary or source * form must include this license and terms. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF * USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ module spine { export class Bone implements Updatable { data: BoneData; skeleton: Skeleton; parent: Bone; children = new Array(); x = 0; y = 0; rotation = 0; scaleX = 0; scaleY = 0; shearX = 0; shearY = 0; ax = 0; ay = 0; arotation = 0; ascaleX = 0; ascaleY = 0; ashearX = 0; ashearY = 0; appliedValid = false; a = 0; b = 0; worldX = 0; c = 0; d = 0; worldY = 0; sorted = false; /** @param parent May be null. */ constructor (data: BoneData, skeleton: Skeleton, parent: Bone) { if (data == null) throw new Error("data cannot be null."); if (skeleton == null) throw new Error("skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; this.setToSetupPose(); } /** Same as {@link #updateWorldTransform()}. This method exists for Bone to implement {@link Updatable}. */ update () { this.updateWorldTransformWith(this.x, this.y, this.rotation, this.scaleX, this.scaleY, this.shearX, this.shearY); } /** Computes the world transform using the parent bone and this bone's local transform. */ updateWorldTransform () { this.updateWorldTransformWith(this.x, this.y, this.rotation, this.scaleX, this.scaleY, this.shearX, this.shearY); } /** Computes the world transform using the parent bone and the specified local transform. */ updateWorldTransformWith (x: number, y: number, rotation: number, scaleX: number, scaleY: number, shearX: number, shearY: number) { this.ax = x; this.ay = y; this.arotation = rotation; this.ascaleX = scaleX; this.ascaleY = scaleY; this.ashearX = shearX; this.ashearY = shearY; this.appliedValid = true; let parent = this.parent; if (parent == null) { // Root bone. let skeleton = this.skeleton; let rotationY = rotation + 90 + shearY; let sx = skeleton.scaleX; let sy = skeleton.scaleY; this.a = MathUtils.cosDeg(rotation + shearX) * scaleX * sx; this.b = MathUtils.cosDeg(rotationY) * scaleY * sy; this.c = MathUtils.sinDeg(rotation + shearX) * scaleX * sx; this.d = MathUtils.sinDeg(rotationY) * scaleY * sy; this.worldX = x * sx + skeleton.x; this.worldY = y * sy + skeleton.y; return; } let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; this.worldX = pa * x + pb * y + parent.worldX; this.worldY = pc * x + pd * y + parent.worldY; switch (this.data.transformMode) { case TransformMode.Normal: { let rotationY = rotation + 90 + shearY; let la = MathUtils.cosDeg(rotation + shearX) * scaleX; let lb = MathUtils.cosDeg(rotationY) * scaleY; let lc = MathUtils.sinDeg(rotation + shearX) * scaleX; let ld = MathUtils.sinDeg(rotationY) * scaleY; this.a = pa * la + pb * lc; this.b = pa * lb + pb * ld; this.c = pc * la + pd * lc; this.d = pc * lb + pd * ld; return; } case TransformMode.OnlyTranslation: { let rotationY = rotation + 90 + shearY; this.a = MathUtils.cosDeg(rotation + shearX) * scaleX; this.b = MathUtils.cosDeg(rotationY) * scaleY; this.c = MathUtils.sinDeg(rotation + shearX) * scaleX; this.d = MathUtils.sinDeg(rotationY) * scaleY; break; } case TransformMode.NoRotationOrReflection: { let s = pa * pa + pc * pc; let prx = 0; if (s > 0.0001) { s = Math.abs(pa * pd - pb * pc) / s; pb = pc * s; pd = pa * s; prx = Math.atan2(pc, pa) * MathUtils.radDeg; } else { pa = 0; pc = 0; prx = 90 - Math.atan2(pd, pb) * MathUtils.radDeg; } let rx = rotation + shearX - prx; let ry = rotation + shearY - prx + 90; let la = MathUtils.cosDeg(rx) * scaleX; let lb = MathUtils.cosDeg(ry) * scaleY; let lc = MathUtils.sinDeg(rx) * scaleX; let ld = MathUtils.sinDeg(ry) * scaleY; this.a = pa * la - pb * lc; this.b = pa * lb - pb * ld; this.c = pc * la + pd * lc; this.d = pc * lb + pd * ld; break; } case TransformMode.NoScale: case TransformMode.NoScaleOrReflection: { let cos = MathUtils.cosDeg(rotation); let sin = MathUtils.sinDeg(rotation); let za = (pa * cos + pb * sin) / this.skeleton.scaleX; let zc = (pc * cos + pd * sin) / this.skeleton.scaleY; let s = Math.sqrt(za * za + zc * zc); if (s > 0.00001) s = 1 / s; za *= s; zc *= s; s = Math.sqrt(za * za + zc * zc); let r = Math.PI / 2 + Math.atan2(zc, za); let zb = Math.cos(r) * s; let zd = Math.sin(r) * s; let la = MathUtils.cosDeg(shearX) * scaleX; let lb = MathUtils.cosDeg(90 + shearY) * scaleY; let lc = MathUtils.sinDeg(shearX) * scaleX; let ld = MathUtils.sinDeg(90 + shearY) * scaleY; this.a = za * la + zb * lc; this.b = za * lb + zb * ld; this.c = zc * la + zd * lc; this.d = zc * lb + zd * ld; break; } } this.a *= this.skeleton.scaleX; this.b *= this.skeleton.scaleX; this.c *= this.skeleton.scaleY; this.d *= this.skeleton.scaleY; } setToSetupPose () { let data = this.data; this.x = data.x; this.y = data.y; this.rotation = data.rotation; this.scaleX = data.scaleX; this.scaleY = data.scaleY; this.shearX = data.shearX; this.shearY = data.shearY; } getWorldRotationX () { return Math.atan2(this.c, this.a) * MathUtils.radDeg; } getWorldRotationY () { return Math.atan2(this.d, this.b) * MathUtils.radDeg; } getWorldScaleX () { return Math.sqrt(this.a * this.a + this.c * this.c); } getWorldScaleY () { return Math.sqrt(this.b * this.b + this.d * this.d); } /** Computes the individual applied transform values from the world transform. This can be useful to perform processing using * the applied transform after the world transform has been modified directly (eg, by a constraint). *

* Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. */ updateAppliedTransform () { this.appliedValid = true; let parent = this.parent; if (parent == null) { this.ax = this.worldX; this.ay = this.worldY; this.arotation = Math.atan2(this.c, this.a) * MathUtils.radDeg; this.ascaleX = Math.sqrt(this.a * this.a + this.c * this.c); this.ascaleY = Math.sqrt(this.b * this.b + this.d * this.d); this.ashearX = 0; this.ashearY = Math.atan2(this.a * this.b + this.c * this.d, this.a * this.d - this.b * this.c) * MathUtils.radDeg; return; } let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; let pid = 1 / (pa * pd - pb * pc); let dx = this.worldX - parent.worldX, dy = this.worldY - parent.worldY; this.ax = (dx * pd * pid - dy * pb * pid); this.ay = (dy * pa * pid - dx * pc * pid); let ia = pid * pd; let id = pid * pa; let ib = pid * pb; let ic = pid * pc; let ra = ia * this.a - ib * this.c; let rb = ia * this.b - ib * this.d; let rc = id * this.c - ic * this.a; let rd = id * this.d - ic * this.b; this.ashearX = 0; this.ascaleX = Math.sqrt(ra * ra + rc * rc); if (this.ascaleX > 0.0001) { let det = ra * rd - rb * rc; this.ascaleY = det / this.ascaleX; this.ashearY = Math.atan2(ra * rb + rc * rd, det) * MathUtils.radDeg; this.arotation = Math.atan2(rc, ra) * MathUtils.radDeg; } else { this.ascaleX = 0; this.ascaleY = Math.sqrt(rb * rb + rd * rd); this.ashearY = 0; this.arotation = 90 - Math.atan2(rd, rb) * MathUtils.radDeg; } } worldToLocal (world: Vector2) { let a = this.a, b = this.b, c = this.c, d = this.d; let invDet = 1 / (a * d - b * c); let x = world.x - this.worldX, y = world.y - this.worldY; world.x = (x * d * invDet - y * b * invDet); world.y = (y * a * invDet - x * c * invDet); return world; } localToWorld (local: Vector2) { let x = local.x, y = local.y; local.x = x * this.a + y * this.b + this.worldX; local.y = x * this.c + y * this.d + this.worldY; return local; } worldToLocalRotation (worldRotation: number) { let sin = MathUtils.sinDeg(worldRotation), cos = MathUtils.cosDeg(worldRotation); return Math.atan2(this.a * sin - this.c * cos, this.d * cos - this.b * sin) * MathUtils.radDeg; } localToWorldRotation (localRotation: number) { let sin = MathUtils.sinDeg(localRotation), cos = MathUtils.cosDeg(localRotation); return Math.atan2(cos * this.c + sin * this.d, cos * this.a + sin * this.b) * MathUtils.radDeg; } rotateWorld (degrees: number) { let a = this.a, b = this.b, c = this.c, d = this.d; let cos = MathUtils.cosDeg(degrees), sin = MathUtils.sinDeg(degrees); this.a = cos * a - sin * c; this.b = cos * b - sin * d; this.c = sin * a + cos * c; this.d = sin * b + cos * d; this.appliedValid = false; } } }