/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ module spine { /** Stores a bone's current pose. * * A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a * local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a * constraint or application code modifies the world transform after it was computed from the local transform. */ export class Bone implements Updatable { /** The bone's setup pose data. */ data: BoneData; /** The skeleton this bone belongs to. */ skeleton: Skeleton; /** The parent bone, or null if this is the root bone. */ parent: Bone; /** The immediate children of this bone. */ children = new Array(); /** The local x translation. */ x = 0; /** The local y translation. */ y = 0; /** The local rotation in degrees, counter clockwise. */ rotation = 0; /** The local scaleX. */ scaleX = 0; /** The local scaleY. */ scaleY = 0; /** The local shearX. */ shearX = 0; /** The local shearY. */ shearY = 0; /** The applied local x translation. */ ax = 0; /** The applied local y translation. */ ay = 0; /** The applied local rotation in degrees, counter clockwise. */ arotation = 0; /** The applied local scaleX. */ ascaleX = 0; /** The applied local scaleY. */ ascaleY = 0; /** The applied local shearX. */ ashearX = 0; /** The applied local shearY. */ ashearY = 0; /** If true, the applied transform matches the world transform. If false, the world transform has been modified since it was * computed and {@link #updateAppliedTransform()} must be called before accessing the applied transform. */ appliedValid = false; /** Part of the world transform matrix for the X axis. If changed, {@link #appliedValid} should be set to false. */ a = 0; /** Part of the world transform matrix for the Y axis. If changed, {@link #appliedValid} should be set to false. */ b = 0; /** Part of the world transform matrix for the X axis. If changed, {@link #appliedValid} should be set to false. */ c = 0; /** Part of the world transform matrix for the Y axis. If changed, {@link #appliedValid} should be set to false. */ d = 0; /** The world X position. If changed, {@link #appliedValid} should be set to false. */ worldY = 0; /** The world Y position. If changed, {@link #appliedValid} should be set to false. */ worldX = 0; sorted = false; active = false; /** @param parent May be null. */ constructor (data: BoneData, skeleton: Skeleton, parent: Bone) { if (data == null) throw new Error("data cannot be null."); if (skeleton == null) throw new Error("skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; this.setToSetupPose(); } /** Returns false when the bone has not been computed because {@link BoneData#skinRequired} is true and the * {@link Skeleton#skin active skin} does not {@link Skin#bones contain} this bone. */ isActive () { return this.active; } /** Same as {@link #updateWorldTransform()}. This method exists for Bone to implement {@link Updatable}. */ update () { this.updateWorldTransformWith(this.x, this.y, this.rotation, this.scaleX, this.scaleY, this.shearX, this.shearY); } /** Computes the world transform using the parent bone and this bone's local transform. * * See {@link #updateWorldTransformWith()}. */ updateWorldTransform () { this.updateWorldTransformWith(this.x, this.y, this.rotation, this.scaleX, this.scaleY, this.shearX, this.shearY); } /** Computes the world transform using the parent bone and the specified local transform. Child bones are not updated. * * See [World transforms](http://esotericsoftware.com/spine-runtime-skeletons#World-transforms) in the Spine * Runtimes Guide. */ updateWorldTransformWith (x: number, y: number, rotation: number, scaleX: number, scaleY: number, shearX: number, shearY: number) { this.ax = x; this.ay = y; this.arotation = rotation; this.ascaleX = scaleX; this.ascaleY = scaleY; this.ashearX = shearX; this.ashearY = shearY; this.appliedValid = true; let parent = this.parent; if (parent == null) { // Root bone. let skeleton = this.skeleton; let rotationY = rotation + 90 + shearY; let sx = skeleton.scaleX; let sy = skeleton.scaleY; this.a = MathUtils.cosDeg(rotation + shearX) * scaleX * sx; this.b = MathUtils.cosDeg(rotationY) * scaleY * sx; this.c = MathUtils.sinDeg(rotation + shearX) * scaleX * sy; this.d = MathUtils.sinDeg(rotationY) * scaleY * sy; this.worldX = x * sx + skeleton.x; this.worldY = y * sy + skeleton.y; return; } let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; this.worldX = pa * x + pb * y + parent.worldX; this.worldY = pc * x + pd * y + parent.worldY; switch (this.data.transformMode) { case TransformMode.Normal: { let rotationY = rotation + 90 + shearY; let la = MathUtils.cosDeg(rotation + shearX) * scaleX; let lb = MathUtils.cosDeg(rotationY) * scaleY; let lc = MathUtils.sinDeg(rotation + shearX) * scaleX; let ld = MathUtils.sinDeg(rotationY) * scaleY; this.a = pa * la + pb * lc; this.b = pa * lb + pb * ld; this.c = pc * la + pd * lc; this.d = pc * lb + pd * ld; return; } case TransformMode.OnlyTranslation: { let rotationY = rotation + 90 + shearY; this.a = MathUtils.cosDeg(rotation + shearX) * scaleX; this.b = MathUtils.cosDeg(rotationY) * scaleY; this.c = MathUtils.sinDeg(rotation + shearX) * scaleX; this.d = MathUtils.sinDeg(rotationY) * scaleY; break; } case TransformMode.NoRotationOrReflection: { let s = pa * pa + pc * pc; let prx = 0; if (s > 0.0001) { s = Math.abs(pa * pd - pb * pc) / s; pb = pc * s; pd = pa * s; prx = Math.atan2(pc, pa) * MathUtils.radDeg; } else { pa = 0; pc = 0; prx = 90 - Math.atan2(pd, pb) * MathUtils.radDeg; } let rx = rotation + shearX - prx; let ry = rotation + shearY - prx + 90; let la = MathUtils.cosDeg(rx) * scaleX; let lb = MathUtils.cosDeg(ry) * scaleY; let lc = MathUtils.sinDeg(rx) * scaleX; let ld = MathUtils.sinDeg(ry) * scaleY; this.a = pa * la - pb * lc; this.b = pa * lb - pb * ld; this.c = pc * la + pd * lc; this.d = pc * lb + pd * ld; break; } case TransformMode.NoScale: case TransformMode.NoScaleOrReflection: { let cos = MathUtils.cosDeg(rotation); let sin = MathUtils.sinDeg(rotation); let za = (pa * cos + pb * sin) / this.skeleton.scaleX; let zc = (pc * cos + pd * sin) / this.skeleton.scaleY; let s = Math.sqrt(za * za + zc * zc); if (s > 0.00001) s = 1 / s; za *= s; zc *= s; s = Math.sqrt(za * za + zc * zc); if (this.data.transformMode == TransformMode.NoScale && (pa * pd - pb * pc < 0) != (this.skeleton.scaleX < 0 != this.skeleton.scaleY < 0)) s = -s; let r = Math.PI / 2 + Math.atan2(zc, za); let zb = Math.cos(r) * s; let zd = Math.sin(r) * s; let la = MathUtils.cosDeg(shearX) * scaleX; let lb = MathUtils.cosDeg(90 + shearY) * scaleY; let lc = MathUtils.sinDeg(shearX) * scaleX; let ld = MathUtils.sinDeg(90 + shearY) * scaleY; this.a = za * la + zb * lc; this.b = za * lb + zb * ld; this.c = zc * la + zd * lc; this.d = zc * lb + zd * ld; break; } } this.a *= this.skeleton.scaleX; this.b *= this.skeleton.scaleX; this.c *= this.skeleton.scaleY; this.d *= this.skeleton.scaleY; } /** Sets this bone's local transform to the setup pose. */ setToSetupPose () { let data = this.data; this.x = data.x; this.y = data.y; this.rotation = data.rotation; this.scaleX = data.scaleX; this.scaleY = data.scaleY; this.shearX = data.shearX; this.shearY = data.shearY; } /** The world rotation for the X axis, calculated using {@link #a} and {@link #c}. */ getWorldRotationX () { return Math.atan2(this.c, this.a) * MathUtils.radDeg; } /** The world rotation for the Y axis, calculated using {@link #b} and {@link #d}. */ getWorldRotationY () { return Math.atan2(this.d, this.b) * MathUtils.radDeg; } /** The magnitude (always positive) of the world scale X, calculated using {@link #a} and {@link #c}. */ getWorldScaleX () { return Math.sqrt(this.a * this.a + this.c * this.c); } /** The magnitude (always positive) of the world scale Y, calculated using {@link #b} and {@link #d}. */ getWorldScaleY () { return Math.sqrt(this.b * this.b + this.d * this.d); } /** Computes the applied transform values from the world transform. This allows the applied transform to be accessed after the * world transform has been modified (by a constraint, {@link #rotateWorld()}, etc). * * If {@link #updateWorldTransform()} has been called for a bone and {@link #appliedValid} is false, then * {@link #updateAppliedTransform()} must be called before accessing the applied transform. * * Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after * calling this method is equivalent to the local tranform used to compute the world transform, but may not be identical. */ updateAppliedTransform () { this.appliedValid = true; let parent = this.parent; if (parent == null) { this.ax = this.worldX; this.ay = this.worldY; this.arotation = Math.atan2(this.c, this.a) * MathUtils.radDeg; this.ascaleX = Math.sqrt(this.a * this.a + this.c * this.c); this.ascaleY = Math.sqrt(this.b * this.b + this.d * this.d); this.ashearX = 0; this.ashearY = Math.atan2(this.a * this.b + this.c * this.d, this.a * this.d - this.b * this.c) * MathUtils.radDeg; return; } let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; let pid = 1 / (pa * pd - pb * pc); let dx = this.worldX - parent.worldX, dy = this.worldY - parent.worldY; this.ax = (dx * pd * pid - dy * pb * pid); this.ay = (dy * pa * pid - dx * pc * pid); let ia = pid * pd; let id = pid * pa; let ib = pid * pb; let ic = pid * pc; let ra = ia * this.a - ib * this.c; let rb = ia * this.b - ib * this.d; let rc = id * this.c - ic * this.a; let rd = id * this.d - ic * this.b; this.ashearX = 0; this.ascaleX = Math.sqrt(ra * ra + rc * rc); if (this.ascaleX > 0.0001) { let det = ra * rd - rb * rc; this.ascaleY = det / this.ascaleX; this.ashearY = Math.atan2(ra * rb + rc * rd, det) * MathUtils.radDeg; this.arotation = Math.atan2(rc, ra) * MathUtils.radDeg; } else { this.ascaleX = 0; this.ascaleY = Math.sqrt(rb * rb + rd * rd); this.ashearY = 0; this.arotation = 90 - Math.atan2(rd, rb) * MathUtils.radDeg; } } /** Transforms a point from world coordinates to the bone's local coordinates. */ worldToLocal (world: Vector2) { let a = this.a, b = this.b, c = this.c, d = this.d; let invDet = 1 / (a * d - b * c); let x = world.x - this.worldX, y = world.y - this.worldY; world.x = (x * d * invDet - y * b * invDet); world.y = (y * a * invDet - x * c * invDet); return world; } /** Transforms a point from the bone's local coordinates to world coordinates. */ localToWorld (local: Vector2) { let x = local.x, y = local.y; local.x = x * this.a + y * this.b + this.worldX; local.y = x * this.c + y * this.d + this.worldY; return local; } /** Transforms a world rotation to a local rotation. */ worldToLocalRotation (worldRotation: number) { let sin = MathUtils.sinDeg(worldRotation), cos = MathUtils.cosDeg(worldRotation); return Math.atan2(this.a * sin - this.c * cos, this.d * cos - this.b * sin) * MathUtils.radDeg + this.rotation - this.shearX; } /** Transforms a local rotation to a world rotation. */ localToWorldRotation (localRotation: number) { localRotation -= this.rotation - this.shearX; let sin = MathUtils.sinDeg(localRotation), cos = MathUtils.cosDeg(localRotation); return Math.atan2(cos * this.c + sin * this.d, cos * this.a + sin * this.b) * MathUtils.radDeg; } /** Rotates the world transform the specified amount and sets {@link #appliedValid} to false. * {@link #updateWorldTransform()} will need to be called on any child bones, recursively, and any constraints reapplied. */ rotateWorld (degrees: number) { let a = this.a, b = this.b, c = this.c, d = this.d; let cos = MathUtils.cosDeg(degrees), sin = MathUtils.sinDeg(degrees); this.a = cos * a - sin * c; this.b = cos * b - sin * d; this.c = sin * a + cos * c; this.d = sin * b + cos * d; this.appliedValid = false; } } }