/****************************************************************************** * Spine Runtimes License Agreement * Last updated May 1, 2019. Replaces all prior versions. * * Copyright (c) 2013-2019, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS * INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ module spine { /** Loads skeleton data in the Spine binary format. * * See [Spine binary format](http://esotericsoftware.com/spine-binary-format) and * [JSON and binary data](http://esotericsoftware.com/spine-loading-skeleton-data#JSON-and-binary-data) in the Spine * Runtimes Guide. */ export class SkeletonBinary { static AttachmentTypeValues = [ 0 /*AttachmentType.Region*/, 1/*AttachmentType.BoundingBox*/, 2/*AttachmentType.Mesh*/, 3/*AttachmentType.LinkedMesh*/, 4/*AttachmentType.Path*/, 5/*AttachmentType.Point*/, 6/*AttachmentType.Clipping*/ ]; static TransformModeValues = [TransformMode.Normal, TransformMode.OnlyTranslation, TransformMode.NoRotationOrReflection, TransformMode.NoScale, TransformMode.NoScaleOrReflection]; static PositionModeValues = [ PositionMode.Fixed, PositionMode.Percent ]; static SpacingModeValues = [ SpacingMode.Length, SpacingMode.Fixed, SpacingMode.Percent]; static RotateModeValues = [ RotateMode.Tangent, RotateMode.Chain, RotateMode.ChainScale ]; static BlendModeValues = [ BlendMode.Normal, BlendMode.Additive, BlendMode.Multiply, BlendMode.Screen]; static BONE_ROTATE = 0; static BONE_TRANSLATE = 1; static BONE_SCALE = 2; static BONE_SHEAR = 3; static SLOT_ATTACHMENT = 0; static SLOT_COLOR = 1; static SLOT_TWO_COLOR = 2; static PATH_POSITION = 0; static PATH_SPACING = 1; static PATH_MIX = 2; static CURVE_LINEAR = 0; static CURVE_STEPPED = 1; static CURVE_BEZIER = 2; /** Scales bone positions, image sizes, and translations as they are loaded. This allows different size images to be used at * runtime than were used in Spine. * * See [Scaling](http://esotericsoftware.com/spine-loading-skeleton-data#Scaling) in the Spine Runtimes Guide. */ scale = 1; attachmentLoader: AttachmentLoader; private linkedMeshes = new Array(); constructor (attachmentLoader: AttachmentLoader) { this.attachmentLoader = attachmentLoader; } readSkeletonData (binary: Uint8Array): SkeletonData { let scale = this.scale; let skeletonData = new SkeletonData(); skeletonData.name = ""; // BOZO let input = new BinaryInput(binary); skeletonData.hash = input.readString(); skeletonData.version = input.readString(); skeletonData.x = input.readFloat(); skeletonData.y = input.readFloat(); skeletonData.width = input.readFloat(); skeletonData.height = input.readFloat(); let nonessential = input.readBoolean(); if (nonessential) { skeletonData.fps = input.readFloat(); skeletonData.imagesPath = input.readString(); skeletonData.audioPath = input.readString(); } let n = 0; // Strings. n = input.readInt(true) for (let i = 0; i < n; i++) input.strings.push(input.readString()); // Bones. n = input.readInt(true) for (let i = 0; i < n; i++) { let name = input.readString(); let parent = i == 0 ? null : skeletonData.bones[input.readInt(true)]; let data = new BoneData(i, name, parent); data.rotation = input.readFloat(); data.x = input.readFloat() * scale; data.y = input.readFloat() * scale; data.scaleX = input.readFloat(); data.scaleY = input.readFloat(); data.shearX = input.readFloat(); data.shearY = input.readFloat(); data.length = input.readFloat() * scale; data.transformMode = SkeletonBinary.TransformModeValues[input.readInt(true)]; data.skinRequired = input.readBoolean(); if (nonessential) Color.rgba8888ToColor(data.color, input.readInt32()); skeletonData.bones.push(data); } // Slots. n = input.readInt(true); for (let i = 0; i < n; i++) { let slotName = input.readString(); let boneData = skeletonData.bones[input.readInt(true)]; let data = new SlotData(i, slotName, boneData); Color.rgba8888ToColor(data.color, input.readInt32()); let darkColor = input.readInt32(); if (darkColor != -1) Color.rgb888ToColor(data.darkColor = new Color(), darkColor); data.attachmentName = input.readStringRef(); data.blendMode = SkeletonBinary.BlendModeValues[input.readInt(true)]; skeletonData.slots.push(data); } // IK constraints. n = input.readInt(true); for (let i = 0, nn; i < n; i++) { let data = new IkConstraintData(input.readString()); data.order = input.readInt(true); data.skinRequired = input.readBoolean(); nn = input.readInt(true); for (let ii = 0; ii < nn; ii++) data.bones.push(skeletonData.bones[input.readInt(true)]); data.target = skeletonData.bones[input.readInt(true)]; data.mix = input.readFloat(); data.softness = input.readFloat() * scale; data.bendDirection = input.readByte(); data.compress = input.readBoolean(); data.stretch = input.readBoolean(); data.uniform = input.readBoolean(); skeletonData.ikConstraints.push(data); } // Transform constraints. n = input.readInt(true); for (let i = 0, nn; i < n; i++) { let data = new TransformConstraintData(input.readString()); data.order = input.readInt(true); data.skinRequired = input.readBoolean(); nn = input.readInt(true); for (let ii = 0; ii < nn; ii++) data.bones.push(skeletonData.bones[input.readInt(true)]); data.target = skeletonData.bones[input.readInt(true)]; data.local = input.readBoolean(); data.relative = input.readBoolean(); data.offsetRotation = input.readFloat(); data.offsetX = input.readFloat() * scale; data.offsetY = input.readFloat() * scale; data.offsetScaleX = input.readFloat(); data.offsetScaleY = input.readFloat(); data.offsetShearY = input.readFloat(); data.rotateMix = input.readFloat(); data.translateMix = input.readFloat(); data.scaleMix = input.readFloat(); data.shearMix = input.readFloat(); skeletonData.transformConstraints.push(data); } // Path constraints. n = input.readInt(true); for (let i = 0, nn; i < n; i++) { let data = new PathConstraintData(input.readString()); data.order = input.readInt(true); data.skinRequired = input.readBoolean(); nn = input.readInt(true); for (let ii = 0; ii < nn; ii++) data.bones.push(skeletonData.bones[input.readInt(true)]); data.target = skeletonData.slots[input.readInt(true)]; data.positionMode = SkeletonBinary.PositionModeValues[input.readInt(true)]; data.spacingMode = SkeletonBinary.SpacingModeValues[input.readInt(true)]; data.rotateMode = SkeletonBinary.RotateModeValues[input.readInt(true)]; data.offsetRotation = input.readFloat(); data.position = input.readFloat(); if (data.positionMode == PositionMode.Fixed) data.position *= scale; data.spacing = input.readFloat(); if (data.spacingMode == SpacingMode.Length || data.spacingMode == SpacingMode.Fixed) data.spacing *= scale; data.rotateMix = input.readFloat(); data.translateMix = input.readFloat(); skeletonData.pathConstraints.push(data); } // Default skin. let defaultSkin = this.readSkin(input, skeletonData, true, nonessential); if (defaultSkin != null) { skeletonData.defaultSkin = defaultSkin; skeletonData.skins.push(defaultSkin); } // Skins. { let i = skeletonData.skins.length; Utils.setArraySize(skeletonData.skins, n = i + input.readInt(true)); for (; i < n; i++) skeletonData.skins[i] = this.readSkin(input, skeletonData, false, nonessential); } // Linked meshes. n = this.linkedMeshes.length; for (let i = 0; i < n; i++) { let linkedMesh = this.linkedMeshes[i]; let skin = linkedMesh.skin == null ? skeletonData.defaultSkin : skeletonData.findSkin(linkedMesh.skin); if (skin == null) throw new Error("Skin not found: " + linkedMesh.skin); let parent = skin.getAttachment(linkedMesh.slotIndex, linkedMesh.parent); if (parent == null) throw new Error("Parent mesh not found: " + linkedMesh.parent); linkedMesh.mesh.deformAttachment = linkedMesh.inheritDeform ? parent as VertexAttachment : linkedMesh.mesh; linkedMesh.mesh.setParentMesh(parent as MeshAttachment); linkedMesh.mesh.updateUVs(); } this.linkedMeshes.length = 0; // Events. n = input.readInt(true); for (let i = 0; i < n; i++) { let data = new EventData(input.readStringRef()); data.intValue = input.readInt(false); data.floatValue = input.readFloat(); data.stringValue = input.readString(); data.audioPath = input.readString(); if (data.audioPath != null) { data.volume = input.readFloat(); data.balance = input.readFloat(); } skeletonData.events.push(data); } // Animations. n = input.readInt(true); for (let i = 0; i < n; i++) skeletonData.animations.push(this.readAnimation(input, input.readString(), skeletonData)); return skeletonData; } private readSkin (input: BinaryInput, skeletonData: SkeletonData, defaultSkin: boolean, nonessential: boolean): Skin { let skin = null; let slotCount = 0; if (defaultSkin) { slotCount = input.readInt(true) if (slotCount == 0) return null; skin = new Skin("default"); } else { skin = new Skin(input.readStringRef()); skin.bones.length = input.readInt(true); for (let i = 0, n = skin.bones.length; i < n; i++) skin.bones[i] = skeletonData.bones[input.readInt(true)]; for (let i = 0, n = input.readInt(true); i < n; i++) skin.constraints.push(skeletonData.ikConstraints[input.readInt(true)]); for (let i = 0, n = input.readInt(true); i < n; i++) skin.constraints.push(skeletonData.transformConstraints[input.readInt(true)]); for (let i = 0, n = input.readInt(true); i < n; i++) skin.constraints.push(skeletonData.pathConstraints[input.readInt(true)]); slotCount = input.readInt(true); } for (let i = 0; i < slotCount; i++) { let slotIndex = input.readInt(true); for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) { let name = input.readStringRef(); let attachment = this.readAttachment(input, skeletonData, skin, slotIndex, name, nonessential); if (attachment != null) skin.setAttachment(slotIndex, name, attachment); } } return skin; } private readAttachment(input: BinaryInput, skeletonData: SkeletonData, skin: Skin, slotIndex: number, attachmentName: string, nonessential: boolean): Attachment { let scale = this.scale; let name = input.readStringRef(); if (name == null) name = attachmentName; let typeIndex = input.readByte(); let type = SkeletonBinary.AttachmentTypeValues[typeIndex]; switch (type) { case AttachmentType.Region: { let path = input.readStringRef(); let rotation = input.readFloat(); let x = input.readFloat(); let y = input.readFloat(); let scaleX = input.readFloat(); let scaleY = input.readFloat(); let width = input.readFloat(); let height = input.readFloat(); let color = input.readInt32(); if (path == null) path = name; let region = this.attachmentLoader.newRegionAttachment(skin, name, path); if (region == null) return null; region.path = path; region.x = x * scale; region.y = y * scale; region.scaleX = scaleX; region.scaleY = scaleY; region.rotation = rotation; region.width = width * scale; region.height = height * scale; Color.rgba8888ToColor(region.color, color); region.updateOffset(); return region; } case AttachmentType.BoundingBox: { let vertexCount = input.readInt(true); let vertices = this.readVertices(input, vertexCount); let color = nonessential ? input.readInt32() : 0; let box = this.attachmentLoader.newBoundingBoxAttachment(skin, name); if (box == null) return null; box.worldVerticesLength = vertexCount << 1; box.vertices = vertices.vertices; box.bones = vertices.bones; if (nonessential) Color.rgba8888ToColor(box.color, color); return box; } case AttachmentType.Mesh: { let path = input.readStringRef(); let color = input.readInt32(); let vertexCount = input.readInt(true); let uvs = this.readFloatArray(input, vertexCount << 1, 1); let triangles = this.readShortArray(input); let vertices = this.readVertices(input, vertexCount); let hullLength = input.readInt(true); let edges = null; let width = 0, height = 0; if (nonessential) { edges = this.readShortArray(input); width = input.readFloat(); height = input.readFloat(); } if (path == null) path = name; let mesh = this.attachmentLoader.newMeshAttachment(skin, name, path); if (mesh == null) return null; mesh.path = path; Color.rgba8888ToColor(mesh.color, color); mesh.bones = vertices.bones; mesh.vertices = vertices.vertices; mesh.worldVerticesLength = vertexCount << 1; mesh.triangles = triangles; mesh.regionUVs = uvs; mesh.updateUVs(); mesh.hullLength = hullLength << 1; if (nonessential) { mesh.edges = edges; mesh.width = width * scale; mesh.height = height * scale; } return mesh; } case AttachmentType.LinkedMesh: { let path = input.readStringRef(); let color = input.readInt32(); let skinName = input.readStringRef(); let parent = input.readStringRef(); let inheritDeform = input.readBoolean(); let width = 0, height = 0; if (nonessential) { width = input.readFloat(); height = input.readFloat(); } if (path == null) path = name; let mesh = this.attachmentLoader.newMeshAttachment(skin, name, path); if (mesh == null) return null; mesh.path = path; Color.rgba8888ToColor(mesh.color, color); if (nonessential) { mesh.width = width * scale; mesh.height = height * scale; } this.linkedMeshes.push(new LinkedMesh(mesh, skinName, slotIndex, parent, inheritDeform)); return mesh; } case AttachmentType.Path: { let closed = input.readBoolean(); let constantSpeed = input.readBoolean(); let vertexCount = input.readInt(true); let vertices = this.readVertices(input, vertexCount); let lengths = Utils.newArray(vertexCount / 3, 0); for (let i = 0, n = lengths.length; i < n; i++) lengths[i] = input.readFloat() * scale; let color = nonessential ? input.readInt32() : 0; let path = this.attachmentLoader.newPathAttachment(skin, name); if (path == null) return null; path.closed = closed; path.constantSpeed = constantSpeed; path.worldVerticesLength = vertexCount << 1; path.vertices = vertices.vertices; path.bones = vertices.bones; path.lengths = lengths; if (nonessential) Color.rgba8888ToColor(path.color, color); return path; } case AttachmentType.Point: { let rotation = input.readFloat(); let x = input.readFloat(); let y = input.readFloat(); let color = nonessential ? input.readInt32() : 0; let point = this.attachmentLoader.newPointAttachment(skin, name); if (point == null) return null; point.x = x * scale; point.y = y * scale; point.rotation = rotation; if (nonessential) Color.rgba8888ToColor(point.color, color); return point; } case AttachmentType.Clipping: { let endSlotIndex = input.readInt(true); let vertexCount = input.readInt(true); let vertices = this.readVertices(input, vertexCount); let color = nonessential ? input.readInt32() : 0; let clip = this.attachmentLoader.newClippingAttachment(skin, name); if (clip == null) return null; clip.endSlot = skeletonData.slots[endSlotIndex]; clip.worldVerticesLength = vertexCount << 1; clip.vertices = vertices.vertices; clip.bones = vertices.bones; if (nonessential) Color.rgba8888ToColor(clip.color, color); return clip; } } return null; } private readVertices (input: BinaryInput, vertexCount: number): Vertices { let verticesLength = vertexCount << 1; let vertices = new Vertices(); let scale = this.scale; if (!input.readBoolean()) { vertices.vertices = this.readFloatArray(input, verticesLength, scale); return vertices; } let weights = new Array(); let bonesArray = new Array(); for (let i = 0; i < vertexCount; i++) { let boneCount = input.readInt(true); bonesArray.push(boneCount); for (let ii = 0; ii < boneCount; ii++) { bonesArray.push(input.readInt(true)); weights.push(input.readFloat() * scale); weights.push(input.readFloat() * scale); weights.push(input.readFloat()); } } vertices.vertices = Utils.toFloatArray(weights); vertices.bones = bonesArray; return vertices; } private readFloatArray (input: BinaryInput, n: number, scale: number): number[] { let array = new Array(n); if (scale == 1) { for (let i = 0; i < n; i++) array[i] = input.readFloat(); } else { for (let i = 0; i < n; i++) array[i] = input.readFloat() * scale; } return array; } private readShortArray (input: BinaryInput): number[] { let n = input.readInt(true); let array = new Array(n); for (let i = 0; i < n; i++) array[i] = input.readShort(); return array; } private readAnimation (input: BinaryInput, name: string, skeletonData: SkeletonData): Animation { let timelines = new Array(); let scale = this.scale; let duration = 0; let tempColor1 = new Color(); let tempColor2 = new Color(); // Slot timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let slotIndex = input.readInt(true); for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) { let timelineType = input.readByte(); let frameCount = input.readInt(true); switch (timelineType) { case SkeletonBinary.SLOT_ATTACHMENT: { let timeline = new AttachmentTimeline(frameCount); timeline.slotIndex = slotIndex; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) timeline.setFrame(frameIndex, input.readFloat(), input.readStringRef()); timelines.push(timeline); duration = Math.max(duration, timeline.frames[frameCount - 1]); break; } case SkeletonBinary.SLOT_COLOR: { let timeline = new ColorTimeline(frameCount); timeline.slotIndex = slotIndex; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { let time = input.readFloat(); Color.rgba8888ToColor(tempColor1, input.readInt32()); timeline.setFrame(frameIndex, time, tempColor1.r, tempColor1.g, tempColor1.b, tempColor1.a); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * ColorTimeline.ENTRIES]); break; } case SkeletonBinary.SLOT_TWO_COLOR: { let timeline = new TwoColorTimeline(frameCount); timeline.slotIndex = slotIndex; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { let time = input.readFloat(); Color.rgba8888ToColor(tempColor1, input.readInt32()); Color.rgb888ToColor(tempColor2, input.readInt32()); timeline.setFrame(frameIndex, time, tempColor1.r, tempColor1.g, tempColor1.b, tempColor1.a, tempColor2.r, tempColor2.g, tempColor2.b); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * TwoColorTimeline.ENTRIES]); break; } } } } // Bone timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let boneIndex = input.readInt(true); for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) { let timelineType = input.readByte(); let frameCount = input.readInt(true); switch (timelineType) { case SkeletonBinary.BONE_ROTATE: { let timeline = new RotateTimeline(frameCount); timeline.boneIndex = boneIndex; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat()); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * RotateTimeline.ENTRIES]); break; } case SkeletonBinary.BONE_TRANSLATE: case SkeletonBinary.BONE_SCALE: case SkeletonBinary.BONE_SHEAR: { let timeline; let timelineScale = 1; if (timelineType == SkeletonBinary.BONE_SCALE) timeline = new ScaleTimeline(frameCount); else if (timelineType == SkeletonBinary.BONE_SHEAR) timeline = new ShearTimeline(frameCount); else { timeline = new TranslateTimeline(frameCount); timelineScale = scale; } timeline.boneIndex = boneIndex; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat() * timelineScale, input.readFloat() * timelineScale); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * TranslateTimeline.ENTRIES]); break; } } } } // IK constraint timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let index = input.readInt(true); let frameCount = input.readInt(true); let timeline = new IkConstraintTimeline(frameCount); timeline.ikConstraintIndex = index; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat(), input.readFloat() * scale, input.readByte(), input.readBoolean(), input.readBoolean()); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * IkConstraintTimeline.ENTRIES]); } // Transform constraint timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let index = input.readInt(true); let frameCount = input.readInt(true); let timeline = new TransformConstraintTimeline(frameCount); timeline.transformConstraintIndex = index; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat(), input.readFloat(), input.readFloat(), input.readFloat()); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * TransformConstraintTimeline.ENTRIES]); } // Path constraint timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let index = input.readInt(true); let data = skeletonData.pathConstraints[index]; for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) { let timelineType = input.readByte(); let frameCount = input.readInt(true); switch (timelineType) { case SkeletonBinary.PATH_POSITION: case SkeletonBinary.PATH_SPACING: { let timeline; let timelineScale = 1; if (timelineType == SkeletonBinary.PATH_SPACING) { timeline = new PathConstraintSpacingTimeline(frameCount); if (data.spacingMode == SpacingMode.Length || data.spacingMode == SpacingMode.Fixed) timelineScale = scale; } else { timeline = new PathConstraintPositionTimeline(frameCount); if (data.positionMode == PositionMode.Fixed) timelineScale = scale; } timeline.pathConstraintIndex = index; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat() * timelineScale); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * PathConstraintPositionTimeline.ENTRIES]); break; } case SkeletonBinary.PATH_MIX: { let timeline = new PathConstraintMixTimeline(frameCount); timeline.pathConstraintIndex = index; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { timeline.setFrame(frameIndex, input.readFloat(), input.readFloat(), input.readFloat()); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[(frameCount - 1) * PathConstraintMixTimeline.ENTRIES]); break; } } } } // Deform timelines. for (let i = 0, n = input.readInt(true); i < n; i++) { let skin = skeletonData.skins[input.readInt(true)]; for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) { let slotIndex = input.readInt(true); for (let iii = 0, nnn = input.readInt(true); iii < nnn; iii++) { let attachment = skin.getAttachment(slotIndex, input.readStringRef()) as VertexAttachment; let weighted = attachment.bones != null; let vertices = attachment.vertices; let deformLength = weighted ? vertices.length / 3 * 2 : vertices.length; let frameCount = input.readInt(true); let timeline = new DeformTimeline(frameCount); timeline.slotIndex = slotIndex; timeline.attachment = attachment; for (let frameIndex = 0; frameIndex < frameCount; frameIndex++) { let time = input.readFloat(); let deform; let end = input.readInt(true); if (end == 0) deform = weighted ? Utils.newFloatArray(deformLength) : vertices; else { deform = Utils.newFloatArray(deformLength); let start = input.readInt(true); end += start; if (scale == 1) { for (let v = start; v < end; v++) deform[v] = input.readFloat(); } else { for (let v = start; v < end; v++) deform[v] = input.readFloat() * scale; } if (!weighted) { for (let v = 0, vn = deform.length; v < vn; v++) deform[v] += vertices[v]; } } timeline.setFrame(frameIndex, time, deform); if (frameIndex < frameCount - 1) this.readCurve(input, frameIndex, timeline); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[frameCount - 1]); } } } // Draw order timeline. let drawOrderCount = input.readInt(true); if (drawOrderCount > 0) { let timeline = new DrawOrderTimeline(drawOrderCount); let slotCount = skeletonData.slots.length; for (let i = 0; i < drawOrderCount; i++) { let time = input.readFloat(); let offsetCount = input.readInt(true); let drawOrder = Utils.newArray(slotCount, 0); for (let ii = slotCount - 1; ii >= 0; ii--) drawOrder[ii] = -1; let unchanged = Utils.newArray(slotCount - offsetCount, 0); let originalIndex = 0, unchangedIndex = 0; for (let ii = 0; ii < offsetCount; ii++) { let slotIndex = input.readInt(true); // Collect unchanged items. while (originalIndex != slotIndex) unchanged[unchangedIndex++] = originalIndex++; // Set changed items. drawOrder[originalIndex + input.readInt(true)] = originalIndex++; } // Collect remaining unchanged items. while (originalIndex < slotCount) unchanged[unchangedIndex++] = originalIndex++; // Fill in unchanged items. for (let ii = slotCount - 1; ii >= 0; ii--) if (drawOrder[ii] == -1) drawOrder[ii] = unchanged[--unchangedIndex]; timeline.setFrame(i, time, drawOrder); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[drawOrderCount - 1]); } // Event timeline. let eventCount = input.readInt(true); if (eventCount > 0) { let timeline = new EventTimeline(eventCount); for (let i = 0; i < eventCount; i++) { let time = input.readFloat(); let eventData = skeletonData.events[input.readInt(true)]; let event = new Event(time, eventData); event.intValue = input.readInt(false); event.floatValue = input.readFloat(); event.stringValue = input.readBoolean() ? input.readString() : eventData.stringValue; if (event.data.audioPath != null) { event.volume = input.readFloat(); event.balance = input.readFloat(); } timeline.setFrame(i, event); } timelines.push(timeline); duration = Math.max(duration, timeline.frames[eventCount - 1]); } return new Animation(name, timelines, duration); } private readCurve (input: BinaryInput, frameIndex: number, timeline: CurveTimeline) { switch (input.readByte()) { case SkeletonBinary.CURVE_STEPPED: timeline.setStepped(frameIndex); break; case SkeletonBinary.CURVE_BEZIER: this.setCurve(timeline, frameIndex, input.readFloat(), input.readFloat(), input.readFloat(), input.readFloat()); break; } } setCurve (timeline: CurveTimeline, frameIndex: number, cx1: number, cy1: number, cx2: number, cy2: number) { timeline.setCurve(frameIndex, cx1, cy1, cx2, cy2); } } class BinaryInput { constructor(data: Uint8Array, public strings = new Array(), private index: number = 0, private buffer = new DataView(data.buffer)) {  } readByte(): number { return this.buffer.getInt8(this.index++); } readShort(): number { let value = this.buffer.getInt16(this.index); this.index += 2; return value; } readInt32(): number { let value = this.buffer.getInt32(this.index) this.index += 4; return value; } readInt(optimizePositive: boolean) { let b = this.readByte(); let result = b & 0x7F; if ((b & 0x80) != 0) { b = this.readByte(); result |= (b & 0x7F) << 7; if ((b & 0x80) != 0) { b = this.readByte(); result |= (b & 0x7F) << 14; if ((b & 0x80) != 0) { b = this.readByte(); result |= (b & 0x7F) << 21; if ((b & 0x80) != 0) { b = this.readByte(); result |= (b & 0x7F) << 28; } } } } return optimizePositive ? result : ((result >>> 1) ^ -(result & 1)); } readStringRef (): string { let index = this.readInt(true); return index == 0 ? null : this.strings[index - 1]; } readString (): string { let byteCount = this.readInt(true); switch (byteCount) { case 0: return null; case 1: return ""; } byteCount--; let chars = ""; let charCount = 0; for (let i = 0; i < byteCount;) { let b = this.readByte(); switch (b >> 4) { case 12: case 13: chars += String.fromCharCode(((b & 0x1F) << 6 | this.readByte() & 0x3F)); i += 2; break; case 14: chars += String.fromCharCode(((b & 0x0F) << 12 | (this.readByte() & 0x3F) << 6 | this.readByte() & 0x3F)); i += 3; break; default: chars += String.fromCharCode(b); i++; } } return chars; } readFloat (): number { let value = this.buffer.getFloat32(this.index); this.index += 4; return value; } readBoolean (): boolean { return this.readByte() != 0; } } class LinkedMesh { parent: string; skin: string; slotIndex: number; mesh: MeshAttachment; inheritDeform: boolean; constructor (mesh: MeshAttachment, skin: string, slotIndex: number, parent: string, inheritDeform: boolean) { this.mesh = mesh; this.skin = skin; this.slotIndex = slotIndex; this.parent = parent; this.inheritDeform = inheritDeform; } } class Vertices { constructor(public bones: Array = null, public vertices: Array | Float32Array = null) { } } }