186 lines
6.1 KiB
HTML

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<script src="../dist/iife/spine-webgl.js"></script>
<style>
* {
margin: 0;
padding: 0;
}
</style>
<body>
<canvas id="canvas" style="position: absolute; width: 100%; height: 100%;"></canvas>
<div style="position: absolute; color: white;">
Red: <input id="red-input" type="range" min="0" max="100" value="100" /> <output id="red-value"></output>
<br>
Green: <input id="green-input" type="range" min="0" max="100" value="100" /> <output id="green-value"></output>
<br>
Blue: <input id="blue-input" type="range" min="0" max="100" value="100" /> <output id="blue-value"></output>
</div>
<script>
class App {
constructor() {
this.skeleton = null;
this.animationState = null;
this.shaderValues = { r: 0, g: 0, b: 0, growing: true, color: "r" };
}
loadAssets(canvas) {
// Load the skeleton file.
canvas.assetManager.loadBinary("assets/raptor-pro.skel");
// Load the atlas and its pages.
canvas.assetManager.loadTextureAtlas("assets/raptor-pma.atlas");
}
initialize(canvas) {
let assetManager = canvas.assetManager;
// Create the texture atlas.
var atlas = assetManager.require("assets/raptor-pma.atlas");
// Create a AtlasAttachmentLoader that resolves region, mesh, boundingbox and path attachments
var atlasLoader = new spine.AtlasAttachmentLoader(atlas);
// Create a SkeletonBinary instance for parsing the .skel file.
var skeletonBinary = new spine.SkeletonBinary(atlasLoader);
// Set the scale to apply during parsing, parse the file, and create a new skeleton.
skeletonBinary.scale = 0.6;
var skeletonData = skeletonBinary.readSkeletonData(assetManager.require("assets/raptor-pro.skel"));
this.skeleton = new spine.Skeleton(skeletonData);
// Create an AnimationState, and set the "cape-follow-example" animation in looping mode.
var animationStateData = new spine.AnimationStateData(skeletonData);
this.animationState = new spine.AnimationState(animationStateData);
this.animationState.setAnimation(0, "walk", true);
// Center the camera on the skeleton
const offset = new spine.Vector2();
const size = new spine.Vector2();
this.skeleton.setToSetupPose();
this.skeleton.update(0);
this.skeleton.updateWorldTransform(spine.Physics.update);
this.skeleton.getBounds(offset, size);
canvas.renderer.camera.position.x = offset.x + size.x / 2;
canvas.renderer.camera.position.y = offset.y + size.y / 2;
}
update(canvas, delta) {
// Update the animation state using the delta time.
this.animationState.update(delta);
// Apply the animation state to the skeleton.
this.animationState.apply(this.skeleton);
// Let the skeleton update the transforms of its bones and apply physics
this.skeleton.update(delta);
this.skeleton.updateWorldTransform(spine.Physics.update);
}
render(canvas) {
let renderer = canvas.renderer;
// Resize the viewport to the full canvas.
renderer.resize(spine.ResizeMode.Expand);
// Clear the canvas with a light gray color.
canvas.clear(0.2, 0.2, 0.2, 1);
// Begin rendering.
renderer.begin();
// updateShader(canvas.shader, this.shaderValues);
// Draw the skeleton
renderer.drawSkeleton(this.skeleton, true);
// Complete rendering.
renderer.end();
}
}
// Vertex and Fragment shader has been copied from src/Shader.ts#newTwoColoredTextured
// Fragment shader has been slightly changed to add uniform red_multiplier, green_multiplier, blue_multiplier uniforms
// that are used to multiply the rgb colors
let vertexShader = `
attribute vec4 ${spine.Shader.POSITION};
attribute vec4 ${spine.Shader.COLOR};
attribute vec4 ${spine.Shader.COLOR2};
attribute vec2 ${spine.Shader.TEXCOORDS};
uniform mat4 ${spine.Shader.MVP_MATRIX};
varying vec4 v_light;
varying vec4 v_dark;
varying vec2 v_texCoords;
void main () {
v_light = ${spine.Shader.COLOR};
v_dark = ${spine.Shader.COLOR2};
v_texCoords = ${spine.Shader.TEXCOORDS};
gl_Position = ${spine.Shader.MVP_MATRIX} * ${spine.Shader.POSITION};
}
`;
let fragmentShader = `
#ifdef GL_ES
#define LOWP lowp
precision mediump float;
#else
#define LOWP
#endif
varying LOWP vec4 v_light;
varying LOWP vec4 v_dark;
varying vec2 v_texCoords;
uniform sampler2D u_texture;
uniform float red_multiplier;
uniform float green_multiplier;
uniform float blue_multiplier;
void main () {
vec4 texColor = texture2D(u_texture, v_texCoords);
gl_FragColor.a = texColor.a * v_light.a;
vec3 multipliers = vec3(clamp(red_multiplier, 0.0, 1.0), clamp(green_multiplier, 0.0, 1.0), clamp(blue_multiplier, 0.0, 1.0));
gl_FragColor.rgb = ((texColor.a - 1.0) * v_dark.a + 1.0 - texColor.rgb) * v_dark.rgb + texColor.rgb * v_light.rgb * multipliers;
}
`;
const inputToValue = input => parseFloat(input) / 100;
const redInput = document.querySelector("#red-input");
const redValue = document.querySelector("#red-value");
redValue.textContent = redInput.value;
const greenInput = document.querySelector("#green-input");
const greenValue = document.querySelector("#green-value");
greenValue.textContent = greenInput.value;
const blueInput = document.querySelector("#blue-input");
const blueValue = document.querySelector("#blue-value");
blueValue.textContent = blueInput.value;
redInput.addEventListener("input", (event) => {
redValue.textContent = event.target.value;
});
greenInput.addEventListener("input", (event) => {
greenValue.textContent = event.target.value;
});
blueInput.addEventListener("input", (event) => {
blueValue.textContent = event.target.value;
});
const shader = {
vertexShader,
fragmentShader,
setUniformCallback: (shader) => {
shader.setUniformf("red_multiplier", inputToValue(redInput.value));
shader.setUniformf("green_multiplier", inputToValue(greenInput.value));
shader.setUniformf("blue_multiplier", inputToValue(blueInput.value));
}
}
const app = new spine.SpineCanvas(document.getElementById("canvas"), {
app: new App(),
shader,
})
</script>
</body>
</html>