spine-runtimes/spine-cocos2dx/src/spine/SkeletonRenderer.cpp
sp-stefano-lanza 7183e3b0bd Feature/new skeleton culling (#1196)
* Fix culling of skeleton and clean up code

* Optionally draw the bounding rectangle of skeletons

* Add Visual Studio compiler support

* Fix indentation

* Fix indentation

* Fix indentation

* Revert some indentation changes
2018-10-16 15:46:49 +02:00

1099 lines
42 KiB
C++

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <spine/SkeletonRenderer.h>
#include <spine/extension.h>
#include <spine/SkeletonBatch.h>
#include <spine/SkeletonTwoColorBatch.h>
#include <spine/AttachmentVertices.h>
#include <spine/Cocos2dAttachmentLoader.h>
#include <algorithm>
USING_NS_CC;
namespace spine {
int computeTotalCoordCount(const spSkeleton& skeleton, int startSlotIndex, int endSlotIndex);
cocos2d::Rect computeBoundingRect(const float* coords, int vertexCount);
void interleaveCoordinates(float* dst, const float* src, int vertexCount, int dstStride);
BlendFunc makeBlendFunc(int blendMode, bool premultipliedAlpha);
void transformWorldVertices(float* dstCoord, int coordCount, const spSkeleton& skeleton, int startSlotIndex, int endSlotIndex);
bool cullRectangle(const Mat4 &transform, const cocos2d::Rect& rect, const Camera& camera);
Color4B spColorToColor4B(const spColor& color);
bool slotIsOutRange(const spSlot& slot, int startSlotIndex, int endSlotIndex);
// C Variable length array
#ifdef _MSC_VER
// VLA not supported, use _alloca
#define VLA(type, arr, count) \
type* arr = static_cast<type*>( _alloca(sizeof(type) * count) )
#else
#define VLA(type, arr, count) \
type arr[count]
#endif
SkeletonRenderer* SkeletonRenderer::createWithSkeleton(spSkeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData) {
SkeletonRenderer* node = new SkeletonRenderer(skeleton, ownsSkeleton, ownsSkeletonData);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithData (spSkeletonData* skeletonData, bool ownsSkeletonData) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonData, ownsSkeletonData);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, spAtlas* atlas, float scale) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlas, scale);
node->autorelease();
return node;
}
SkeletonRenderer* SkeletonRenderer::createWithFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
SkeletonRenderer* node = new SkeletonRenderer(skeletonDataFile, atlasFile, scale);
node->autorelease();
return node;
}
void SkeletonRenderer::initialize () {
_clipper = spSkeletonClipping_create();
_blendFunc = BlendFunc::ALPHA_PREMULTIPLIED;
setOpacityModifyRGB(true);
setupGLProgramState(false);
spSkeleton_setToSetupPose(_skeleton);
spSkeleton_updateWorldTransform(_skeleton);
}
void SkeletonRenderer::setupGLProgramState (bool twoColorTintEnabled) {
if (twoColorTintEnabled) {
setGLProgramState(SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState());
return;
}
Texture2D *texture = nullptr;
for (int i = 0, n = _skeleton->slotsCount; i < n; i++) {
spSlot* slot = _skeleton->drawOrder[i];
if (!slot->attachment) continue;
switch (slot->attachment->type) {
case SP_ATTACHMENT_REGION: {
spRegionAttachment* attachment = (spRegionAttachment*)slot->attachment;
texture = static_cast<AttachmentVertices*>(attachment->rendererObject)->_texture;
break;
}
case SP_ATTACHMENT_MESH: {
spMeshAttachment* attachment = (spMeshAttachment*)slot->attachment;
texture = static_cast<AttachmentVertices*>(attachment->rendererObject)->_texture;
break;
}
default:
continue;
}
if (texture != nullptr) {
break;
}
}
setGLProgramState(GLProgramState::getOrCreateWithGLProgramName(GLProgram::SHADER_NAME_POSITION_TEXTURE_COLOR_NO_MVP, texture));
}
void SkeletonRenderer::setSkeletonData (spSkeletonData *skeletonData, bool ownsSkeletonData) {
_skeleton = spSkeleton_create(skeletonData);
_ownsSkeletonData = ownsSkeletonData;
}
SkeletonRenderer::SkeletonRenderer ()
: _atlas(nullptr), _attachmentLoader(nullptr), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _timeScale(1), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
}
SkeletonRenderer::SkeletonRenderer(spSkeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData)
: _atlas(nullptr), _attachmentLoader(nullptr), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _timeScale(1), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithSkeleton(skeleton, ownsSkeleton, ownsSkeletonData);
}
SkeletonRenderer::SkeletonRenderer (spSkeletonData *skeletonData, bool ownsSkeletonData)
: _atlas(nullptr), _attachmentLoader(nullptr), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _timeScale(1), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithData(skeletonData, ownsSkeletonData);
}
SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, spAtlas* atlas, float scale)
: _atlas(nullptr), _attachmentLoader(nullptr), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _timeScale(1), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithJsonFile(skeletonDataFile, atlas, scale);
}
SkeletonRenderer::SkeletonRenderer (const std::string& skeletonDataFile, const std::string& atlasFile, float scale)
: _atlas(nullptr), _attachmentLoader(nullptr), _debugSlots(false), _debugBones(false), _debugMeshes(false), _debugBoundingRect(false), _timeScale(1), _effect(nullptr), _startSlotIndex(0), _endSlotIndex(std::numeric_limits<int>::max()) {
initWithJsonFile(skeletonDataFile, atlasFile, scale);
}
SkeletonRenderer::~SkeletonRenderer () {
if (_ownsSkeletonData) spSkeletonData_dispose(_skeleton->data);
if (_ownsSkeleton) spSkeleton_dispose(_skeleton);
if (_atlas) spAtlas_dispose(_atlas);
if (_attachmentLoader) spAttachmentLoader_dispose(_attachmentLoader);
spSkeletonClipping_dispose(_clipper);
}
void SkeletonRenderer::initWithSkeleton(spSkeleton* skeleton, bool ownsSkeleton, bool ownsSkeletonData) {
_skeleton = skeleton;
_ownsSkeleton = ownsSkeleton;
_ownsSkeletonData = ownsSkeletonData;
initialize();
}
void SkeletonRenderer::initWithData (spSkeletonData* skeletonData, bool ownsSkeletonData) {
_ownsSkeleton = true;
setSkeletonData(skeletonData, ownsSkeletonData);
initialize();
}
void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, spAtlas* atlas, float scale) {
_atlas = atlas;
_attachmentLoader = SUPER(Cocos2dAttachmentLoader_create(_atlas));
spSkeletonJson* json = spSkeletonJson_createWithLoader(_attachmentLoader);
json->scale = scale;
spSkeletonData* skeletonData = spSkeletonJson_readSkeletonDataFile(json, skeletonDataFile.c_str());
CCASSERT(skeletonData, json->error ? json->error : "Error reading skeleton data.");
spSkeletonJson_dispose(json);
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithJsonFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
_atlas = spAtlas_createFromFile(atlasFile.c_str(), 0);
CCASSERT(_atlas, "Error reading atlas file.");
_attachmentLoader = SUPER(Cocos2dAttachmentLoader_create(_atlas));
spSkeletonJson* json = spSkeletonJson_createWithLoader(_attachmentLoader);
json->scale = scale;
spSkeletonData* skeletonData = spSkeletonJson_readSkeletonDataFile(json, skeletonDataFile.c_str());
CCASSERT(skeletonData, json->error ? json->error : "Error reading skeleton data file.");
spSkeletonJson_dispose(json);
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, spAtlas* atlas, float scale) {
_atlas = atlas;
_attachmentLoader = SUPER(Cocos2dAttachmentLoader_create(_atlas));
spSkeletonBinary* binary = spSkeletonBinary_createWithLoader(_attachmentLoader);
binary->scale = scale;
spSkeletonData* skeletonData = spSkeletonBinary_readSkeletonDataFile(binary, skeletonDataFile.c_str());
CCASSERT(skeletonData, binary->error ? binary->error : "Error reading skeleton data file.");
spSkeletonBinary_dispose(binary);
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::initWithBinaryFile (const std::string& skeletonDataFile, const std::string& atlasFile, float scale) {
_atlas = spAtlas_createFromFile(atlasFile.c_str(), 0);
CCASSERT(_atlas, "Error reading atlas file.");
_attachmentLoader = SUPER(Cocos2dAttachmentLoader_create(_atlas));
spSkeletonBinary* binary = spSkeletonBinary_createWithLoader(_attachmentLoader);
binary->scale = scale;
spSkeletonData* skeletonData = spSkeletonBinary_readSkeletonDataFile(binary, skeletonDataFile.c_str());
CCASSERT(skeletonData, binary->error ? binary->error : "Error reading skeleton data file.");
spSkeletonBinary_dispose(binary);
_ownsSkeleton = true;
setSkeletonData(skeletonData, true);
initialize();
}
void SkeletonRenderer::update (float deltaTime) {
Node::update(deltaTime);
if (_ownsSkeleton) spSkeleton_update(_skeleton, deltaTime * _timeScale);
}
void SkeletonRenderer::draw (Renderer* renderer, const Mat4& transform, uint32_t transformFlags) {
assert(_skeleton);
// Early exit if the skeleton is invisible
if (getDisplayedOpacity() == 0 || _skeleton->color.a == 0){
return;
}
const int coordCount = computeTotalCoordCount(*_skeleton, _startSlotIndex, _endSlotIndex);
if (coordCount == 0)
{
return;
}
assert(coordCount % 2 == 0);
VLA(float, worldCoords, coordCount);
transformWorldVertices(worldCoords, coordCount, *_skeleton, _startSlotIndex, _endSlotIndex);
#if CC_USE_CULLING
const Camera* camera = Camera::getVisitingCamera();
const cocos2d::Rect brect = computeBoundingRect(worldCoords, coordCount / 2);
_boundingRect = brect;
if (camera && cullRectangle(transform, brect, *camera))
{
return;
}
#endif
const float* worldCoordPtr = worldCoords;
SkeletonBatch* batch = SkeletonBatch::getInstance();
SkeletonTwoColorBatch* twoColorBatch = SkeletonTwoColorBatch::getInstance();
const bool hasSingleTint = (isTwoColorTint() == false);
if (_effect) {
_effect->begin(_effect, _skeleton);
}
const Color3B displayedColor = getDisplayedColor();
spColor nodeColor;
nodeColor.r = displayedColor.r / 255.f;
nodeColor.g = displayedColor.g / 255.f;
nodeColor.b = displayedColor.b / 255.f;
nodeColor.a = getDisplayedOpacity() / 255.f;
spColor color;
spColor darkColor;
const float darkPremultipliedAlpha = _premultipliedAlpha ? 1.f : 0;
AttachmentVertices* attachmentVertices = nullptr;
TwoColorTrianglesCommand* lastTwoColorTrianglesCommand = nullptr;
for (int i = 0, n = _skeleton->slotsCount; i < n; ++i) {
spSlot* slot = _skeleton->drawOrder[i];
if (!slot->attachment) {
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
if (slotIsOutRange(*slot, _startSlotIndex, _endSlotIndex)) {
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
// Early exit if slot is invisible
if (slot->color.a == 0) {
continue;
}
cocos2d::TrianglesCommand::Triangles triangles;
TwoColorTriangles trianglesTwoColor;
switch (slot->attachment->type) {
case SP_ATTACHMENT_REGION: {
spRegionAttachment* attachment = reinterpret_cast<spRegionAttachment*>(slot->attachment);
// Early exit if attachment is invisible
if (attachment->color.a == 0) {
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
attachmentVertices = getAttachmentVertices(attachment);
float* dstTriangleVertices = nullptr;
int dstStride = 0; // in floats
if (hasSingleTint) {
triangles.indices = attachmentVertices->_triangles->indices;
triangles.indexCount = attachmentVertices->_triangles->indexCount;
triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount);
triangles.vertCount = attachmentVertices->_triangles->vertCount;
assert(triangles.vertCount == 4);
std::memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(cocos2d::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount);
dstStride = sizeof(V3F_C4B_T2F) / sizeof(float);
dstTriangleVertices = reinterpret_cast<float*>(triangles.verts);
} else {
trianglesTwoColor.indices = attachmentVertices->_triangles->indices;
trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount);
trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount;
assert(trianglesTwoColor.vertCount == 4);
for (int i = 0; i < trianglesTwoColor.vertCount; i++) {
trianglesTwoColor.verts[i].texCoords = attachmentVertices->_triangles->verts[i].texCoords;
}
dstTriangleVertices = reinterpret_cast<float*>(trianglesTwoColor.verts);
dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float);
}
// Copy world vertices to triangle vertices
interleaveCoordinates(dstTriangleVertices, worldCoordPtr, 4, dstStride);
worldCoordPtr += 8;
color = attachment->color;
break;
}
case SP_ATTACHMENT_MESH: {
spMeshAttachment* attachment = reinterpret_cast<spMeshAttachment*>(slot->attachment);
// Early exit if attachment is invisible
if (attachment->color.a == 0) {
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
attachmentVertices = getAttachmentVertices(attachment);
float* dstTriangleVertices = nullptr;
int dstStride = 0; // in floats
int dstVertexCount = 0;
if (hasSingleTint) {
triangles.indices = attachmentVertices->_triangles->indices;
triangles.indexCount = attachmentVertices->_triangles->indexCount;
triangles.verts = batch->allocateVertices(attachmentVertices->_triangles->vertCount);
triangles.vertCount = attachmentVertices->_triangles->vertCount;
std::memcpy(triangles.verts, attachmentVertices->_triangles->verts, sizeof(cocos2d::V3F_C4B_T2F) * attachmentVertices->_triangles->vertCount);
dstTriangleVertices = (float*)triangles.verts;
dstStride = sizeof(V3F_C4B_T2F) / sizeof(float);
dstVertexCount = triangles.vertCount;
} else {
trianglesTwoColor.indices = attachmentVertices->_triangles->indices;
trianglesTwoColor.indexCount = attachmentVertices->_triangles->indexCount;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(attachmentVertices->_triangles->vertCount);
trianglesTwoColor.vertCount = attachmentVertices->_triangles->vertCount;
for (int i = 0; i < trianglesTwoColor.vertCount; i++) {
trianglesTwoColor.verts[i].texCoords = attachmentVertices->_triangles->verts[i].texCoords;
}
dstTriangleVertices = (float*)trianglesTwoColor.verts;
dstStride = sizeof(V3F_C4B_C4B_T2F) / sizeof(float);
dstVertexCount = trianglesTwoColor.vertCount;
}
// Copy world vertices to triangle vertices
assert(dstVertexCount * 2 == attachment->super.worldVerticesLength);
interleaveCoordinates(dstTriangleVertices, worldCoordPtr, dstVertexCount, dstStride);
worldCoordPtr += dstVertexCount * 2;
color = attachment->color;
break;
}
case SP_ATTACHMENT_CLIPPING: {
spClippingAttachment* clip = reinterpret_cast<spClippingAttachment*>(slot->attachment);
spSkeletonClipping_clipStart(_clipper, slot, clip);
continue;
}
default:
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
if (slot->darkColor) {
darkColor = *slot->darkColor;
} else {
darkColor.r = 0;
darkColor.g = 0;
darkColor.b = 0;
}
darkColor.a = darkPremultipliedAlpha;
color.a *= nodeColor.a * _skeleton->color.a * slot->color.a;
// skip rendering if the color of this attachment is 0
if (color.a == 0){
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
color.r *= nodeColor.r * _skeleton->color.r * slot->color.r;
color.g *= nodeColor.g * _skeleton->color.g * slot->color.g;
color.b *= nodeColor.b * _skeleton->color.b * slot->color.b;
if (_premultipliedAlpha)
{
color.r *= color.a;
color.g *= color.a;
color.b *= color.a;
}
const cocos2d::Color4B color4B = spColorToColor4B(color);
const cocos2d::Color4B darkColor4B = spColorToColor4B(darkColor);
const BlendFunc blendFunc = makeBlendFunc(slot->data->blendMode, _premultipliedAlpha);
if (hasSingleTint) {
if (spSkeletonClipping_isClipping(_clipper)) {
spSkeletonClipping_clipTriangles(_clipper, (float*)&triangles.verts[0].vertices, triangles.vertCount * sizeof(cocos2d::V3F_C4B_T2F) / 4, triangles.indices, triangles.indexCount, (float*)&triangles.verts[0].texCoords, 6);
batch->deallocateVertices(triangles.vertCount);
if (_clipper->clippedTriangles->size == 0){
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
triangles.vertCount = _clipper->clippedVertices->size >> 1;
triangles.verts = batch->allocateVertices(triangles.vertCount);
triangles.indexCount = _clipper->clippedTriangles->size;
triangles.indices =
batch->allocateIndices(triangles.indexCount);
std::memcpy(triangles.indices, _clipper->clippedTriangles->items, sizeof(unsigned short) * _clipper->clippedTriangles->size);
cocos2d::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags);
const float* verts = _clipper->clippedVertices->items;
const float* uvs = _clipper->clippedUVs->items;
if (_effect) {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
spColor darkTmp;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) {
spColor lightCopy = color;
vertex->vertices.x = verts[vv];
vertex->vertices.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
_effect->transform(_effect, &vertex->vertices.x, &vertex->vertices.y, &vertex->texCoords.u, &vertex->texCoords.v, &lightCopy, &darkTmp);
vertex->colors = spColorToColor4B(lightCopy);
}
} else {
const cocos2d::Color4B color4B = spColorToColor4B(color);
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv+=2, ++vertex) {
vertex->vertices.x = verts[vv];
vertex->vertices.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
vertex->colors = color4B;
}
}
} else {
// Not clipping
cocos2d::TrianglesCommand* batchedTriangles = batch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture, _glProgramState, blendFunc, triangles, transform, transformFlags);
if (_effect) {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
spColor darkTmp;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
spColor lightCopy = color;
_effect->transform(_effect, &vertex->vertices.x, &vertex->vertices.y, &vertex->texCoords.u, &vertex->texCoords.v, &lightCopy, &darkTmp);
vertex->colors = spColorToColor4B(lightCopy);
}
} else {
V3F_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
vertex->colors = color4B;
}
}
}
} else {
// Two tints
if (spSkeletonClipping_isClipping(_clipper)) {
spSkeletonClipping_clipTriangles(_clipper, (float*)&trianglesTwoColor.verts[0].position, trianglesTwoColor.vertCount * sizeof(V3F_C4B_C4B_T2F) / 4, trianglesTwoColor.indices, trianglesTwoColor.indexCount, (float*)&trianglesTwoColor.verts[0].texCoords, 7);
twoColorBatch->deallocateVertices(trianglesTwoColor.vertCount);
if (_clipper->clippedTriangles->size == 0){
spSkeletonClipping_clipEnd(_clipper, slot);
continue;
}
trianglesTwoColor.vertCount = _clipper->clippedVertices->size >> 1;
trianglesTwoColor.verts = twoColorBatch->allocateVertices(trianglesTwoColor.vertCount);
trianglesTwoColor.indexCount = _clipper->clippedTriangles->size;
trianglesTwoColor.indices = twoColorBatch->allocateIndices(trianglesTwoColor.indexCount);
std::memcpy(trianglesTwoColor.indices, _clipper->clippedTriangles->items, sizeof(unsigned short) * _clipper->clippedTriangles->size);
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags);
const float* verts = _clipper->clippedVertices->items;
const float* uvs = _clipper->clippedUVs->items;
if (_effect) {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) {
spColor lightCopy = color;
spColor darkCopy = darkColor;
vertex->position.x = verts[vv];
vertex->position.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
_effect->transform(_effect, &vertex->position.x, &vertex->position.y, &vertex->texCoords.u, &vertex->texCoords.v, &lightCopy, &darkCopy);
vertex->color = spColorToColor4B(lightCopy);
vertex->color2 = spColorToColor4B(darkCopy);
}
} else {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount, vv = 0; v < vn; ++v, vv += 2, ++vertex) {
vertex->position.x = verts[vv];
vertex->position.y = verts[vv + 1];
vertex->texCoords.u = uvs[vv];
vertex->texCoords.v = uvs[vv + 1];
vertex->color = color4B;
vertex->color2 = darkColor4B;
}
}
} else {
TwoColorTrianglesCommand* batchedTriangles = lastTwoColorTrianglesCommand = twoColorBatch->addCommand(renderer, _globalZOrder, attachmentVertices->_texture->getName(), _glProgramState, blendFunc, trianglesTwoColor, transform, transformFlags);
if (_effect) {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
spColor lightCopy = color;
spColor darkCopy = darkColor;
_effect->transform(_effect, &vertex->position.x, &vertex->position.y, &vertex->texCoords.u, &vertex->texCoords.v, &lightCopy, &darkCopy);
vertex->color = spColorToColor4B(lightCopy);
vertex->color2 = spColorToColor4B(darkCopy);
}
} else {
V3F_C4B_C4B_T2F* vertex = batchedTriangles->getTriangles().verts;
for (int v = 0, vn = batchedTriangles->getTriangles().vertCount; v < vn; ++v, ++vertex) {
vertex->color = color4B;
vertex->color2 = darkColor4B;
}
}
}
}
spSkeletonClipping_clipEnd(_clipper, slot);
}
spSkeletonClipping_clipEnd2(_clipper);
if (lastTwoColorTrianglesCommand) {
Node* parent = this->getParent();
// We need to decide if we can postpone flushing the current
// batch. We can postpone if the next sibling node is a
// two color tinted skeleton with the same global-z.
// The parent->getChildrenCount() > 100 check is a hack
// as checking for a sibling is an O(n) operation, and if
// all children of this nodes parent are skeletons, we
// are in O(n2) territory.
if (!parent || parent->getChildrenCount() > 100 || getChildrenCount() != 0) {
lastTwoColorTrianglesCommand->setForceFlush(true);
} else {
Vector<Node*>& children = parent->getChildren();
Node* sibling = nullptr;
for (ssize_t i = 0; i < children.size(); i++) {
if (children.at(i) == this) {
if (i < children.size() - 1) {
sibling = children.at(i+1);
break;
}
}
}
if (!sibling) {
lastTwoColorTrianglesCommand->setForceFlush(true);
} else {
SkeletonRenderer* siblingSkeleton = dynamic_cast<SkeletonRenderer*>(sibling);
if (!siblingSkeleton || // flush is next sibling isn't a SkeletonRenderer
!siblingSkeleton->isTwoColorTint() || // flush if next sibling isn't two color tinted
!siblingSkeleton->isVisible() || // flush if next sibling is two color tinted but not visible
(siblingSkeleton->getGlobalZOrder() != this->getGlobalZOrder())) { // flush if next sibling is two color tinted but z-order differs
lastTwoColorTrianglesCommand->setForceFlush(true);
}
}
}
}
if (_effect) {
_effect->end(_effect);
}
if (_debugBoundingRect || _debugSlots || _debugBones || _debugMeshes) {
drawDebug(renderer, transform, transformFlags);
}
}
void SkeletonRenderer::drawDebug (Renderer* renderer, const Mat4 &transform, uint32_t transformFlags) {
Director* director = Director::getInstance();
director->pushMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
director->loadMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW, transform);
DrawNode* drawNode = DrawNode::create();
// Draw bounding rectangle
if (_debugBoundingRect) {
glLineWidth(2);
const cocos2d::Rect brect = getBoundingBox();
const Vec2 points[4] =
{
brect.origin,
{ brect.origin.x + brect.size.width, brect.origin.y },
{ brect.origin.x + brect.size.width, brect.origin.y + brect.size.height },
{ brect.origin.x, brect.origin.y + brect.size.height }
};
drawNode->drawPoly(points, 4, true, Color4F::GREEN);
}
if (_debugSlots) {
// Slots.
// DrawPrimitives::setDrawColor4B(0, 0, 255, 255);
glLineWidth(1);
V3F_C4B_T2F_Quad quad;
for (int i = 0, n = _skeleton->slotsCount; i < n; i++) {
spSlot* slot = _skeleton->drawOrder[i];
if (!slot->attachment || slot->attachment->type != SP_ATTACHMENT_REGION) {
continue;
}
if (slotIsOutRange(*slot, _startSlotIndex, _endSlotIndex)) {
continue;
}
spRegionAttachment* attachment = (spRegionAttachment*)slot->attachment;
float worldVertices[8];
spRegionAttachment_computeWorldVertices(attachment, slot->bone, worldVertices, 0, 2);
const Vec2 points[4] =
{
{ worldVertices[0], worldVertices[1] },
{ worldVertices[2], worldVertices[3] },
{ worldVertices[4], worldVertices[5] },
{ worldVertices[6], worldVertices[7] }
};
drawNode->drawPoly(points, 4, true, Color4F::BLUE);
}
}
if (_debugBones) {
// Bone lengths.
glLineWidth(2);
for (int i = 0, n = _skeleton->bonesCount; i < n; i++) {
const spBone *bone = _skeleton->bones[i];
float x = bone->data->length * bone->a + bone->worldX;
float y = bone->data->length * bone->c + bone->worldY;
drawNode->drawLine(Vec2(bone->worldX, bone->worldY), Vec2(x, y), Color4F::RED);
}
// Bone origins.
auto color = Color4F::BLUE; // Root bone is blue.
for (int i = 0, n = _skeleton->bonesCount; i < n; i++) {
const spBone *bone = _skeleton->bones[i];
drawNode->drawPoint(Vec2(bone->worldX, bone->worldY), 4, color);
if (i == 0) color = Color4F::GREEN;
}
}
if (_debugMeshes) {
// Meshes.
glLineWidth(1);
for (int i = 0, n = _skeleton->slotsCount; i < n; ++i) {
spSlot* slot = _skeleton->drawOrder[i];
if (!slot->attachment || slot->attachment->type != SP_ATTACHMENT_MESH) continue;
spMeshAttachment* attachment = (spMeshAttachment*)slot->attachment;
VLA(float, worldCoord, attachment->super.worldVerticesLength);
spVertexAttachment_computeWorldVertices(SUPER(attachment), slot, 0, attachment->super.worldVerticesLength, worldCoord, 0, 2);
for (int t = 0; t < attachment->trianglesCount; t += 3) {
// Fetch triangle indices
const int idx0 = attachment->triangles[t + 0];
const int idx1 = attachment->triangles[t + 1];
const int idx2 = attachment->triangles[t + 2];
const Vec2 v[3] =
{
worldCoord + (idx0 * 2),
worldCoord + (idx1 * 2),
worldCoord + (idx2 * 2)
};
drawNode->drawPoly(v, 3, true, Color4F::YELLOW);
}
}
}
drawNode->draw(renderer, transform, transformFlags);
director->popMatrix(MATRIX_STACK_TYPE::MATRIX_STACK_MODELVIEW);
}
AttachmentVertices* SkeletonRenderer::getAttachmentVertices (spRegionAttachment* attachment) const {
return (AttachmentVertices*)attachment->rendererObject;
}
AttachmentVertices* SkeletonRenderer::getAttachmentVertices (spMeshAttachment* attachment) const {
return (AttachmentVertices*)attachment->rendererObject;
}
cocos2d::Rect SkeletonRenderer::getBoundingBox () const {
return _boundingRect;
}
// --- Convenience methods for Skeleton_* functions.
void SkeletonRenderer::updateWorldTransform () {
spSkeleton_updateWorldTransform(_skeleton);
}
void SkeletonRenderer::setToSetupPose () {
spSkeleton_setToSetupPose(_skeleton);
}
void SkeletonRenderer::setBonesToSetupPose () {
spSkeleton_setBonesToSetupPose(_skeleton);
}
void SkeletonRenderer::setSlotsToSetupPose () {
spSkeleton_setSlotsToSetupPose(_skeleton);
}
spBone* SkeletonRenderer::findBone (const std::string& boneName) const {
return spSkeleton_findBone(_skeleton, boneName.c_str());
}
spSlot* SkeletonRenderer::findSlot (const std::string& slotName) const {
return spSkeleton_findSlot(_skeleton, slotName.c_str());
}
bool SkeletonRenderer::setSkin (const std::string& skinName) {
return spSkeleton_setSkinByName(_skeleton, skinName.empty() ? 0 : skinName.c_str()) ? true : false;
}
bool SkeletonRenderer::setSkin (const char* skinName) {
return spSkeleton_setSkinByName(_skeleton, skinName) ? true : false;
}
spAttachment* SkeletonRenderer::getAttachment (const std::string& slotName, const std::string& attachmentName) const {
return spSkeleton_getAttachmentForSlotName(_skeleton, slotName.c_str(), attachmentName.c_str());
}
bool SkeletonRenderer::setAttachment (const std::string& slotName, const std::string& attachmentName) {
return spSkeleton_setAttachment(_skeleton, slotName.c_str(), attachmentName.empty() ? 0 : attachmentName.c_str()) ? true : false;
}
bool SkeletonRenderer::setAttachment (const std::string& slotName, const char* attachmentName) {
return spSkeleton_setAttachment(_skeleton, slotName.c_str(), attachmentName) ? true : false;
}
void SkeletonRenderer::setTwoColorTint(bool enabled) {
setupGLProgramState(enabled);
}
bool SkeletonRenderer::isTwoColorTint() {
return getGLProgramState() == SkeletonTwoColorBatch::getInstance()->getTwoColorTintProgramState();
}
void SkeletonRenderer::setVertexEffect(spVertexEffect *effect) {
this->_effect = effect;
}
void SkeletonRenderer::setSlotsRange(int startSlotIndex, int endSlotIndex) {
_startSlotIndex = startSlotIndex == -1 ? 0 : startSlotIndex;
_endSlotIndex = endSlotIndex == -1 ? std::numeric_limits<int>::max() : endSlotIndex;
}
spSkeleton* SkeletonRenderer::getSkeleton () const {
return _skeleton;
}
void SkeletonRenderer::setTimeScale (float scale) {
_timeScale = scale;
}
float SkeletonRenderer::getTimeScale () const {
return _timeScale;
}
void SkeletonRenderer::setDebugSlotsEnabled (bool enabled) {
_debugSlots = enabled;
}
bool SkeletonRenderer::getDebugSlotsEnabled () const {
return _debugSlots;
}
void SkeletonRenderer::setDebugBonesEnabled (bool enabled) {
_debugBones = enabled;
}
bool SkeletonRenderer::getDebugBonesEnabled () const {
return _debugBones;
}
void SkeletonRenderer::setDebugMeshesEnabled (bool enabled) {
_debugMeshes = enabled;
}
bool SkeletonRenderer::getDebugMeshesEnabled () const {
return _debugMeshes;
}
void SkeletonRenderer::setDebugBoundingRectEnabled(bool enabled) {
_debugBoundingRect = enabled;
}
bool SkeletonRenderer::getDebugBoundingRectEnabled() const {
return _debugBoundingRect;
}
void SkeletonRenderer::onEnter () {
#if CC_ENABLE_SCRIPT_BINDING
if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnEnter)) return;
#endif
Node::onEnter();
scheduleUpdate();
}
void SkeletonRenderer::onExit () {
#if CC_ENABLE_SCRIPT_BINDING
if (_scriptType == kScriptTypeJavascript && ScriptEngineManager::sendNodeEventToJSExtended(this, kNodeOnExit)) return;
#endif
Node::onExit();
unscheduleUpdate();
}
// --- CCBlendProtocol
const BlendFunc& SkeletonRenderer::getBlendFunc () const {
return _blendFunc;
}
void SkeletonRenderer::setBlendFunc (const BlendFunc &blendFunc) {
_blendFunc = blendFunc;
}
void SkeletonRenderer::setOpacityModifyRGB (bool value) {
_premultipliedAlpha = value;
}
bool SkeletonRenderer::isOpacityModifyRGB () const {
return _premultipliedAlpha;
}
cocos2d::Rect computeBoundingRect(const float* coords, int vertexCount)
{
assert(coords);
assert(vertexCount > 0);
const float* v = coords;
float minX = v[0];
float minY = v[1];
float maxX = minX;
float maxY = minY;
for (int i = 1; i < vertexCount; ++i)
{
v += 2;
float x = v[0];
float y = v[1];
minX = std::min(minX, x);
minY = std::min(minY, y);
maxX = std::max(maxX, x);
maxY = std::max(maxY, y);
}
return { minX, minY, maxX - minX, maxY - minY };
}
bool slotIsOutRange(const spSlot& slot, int startSlotIndex, int endSlotIndex)
{
return startSlotIndex > slot.data->index || endSlotIndex < slot.data->index;
}
int computeTotalCoordCount(const spSkeleton& skeleton, int startSlotIndex, int endSlotIndex)
{
int coordCount = 0;
for (int i = 0; i < skeleton.slotsCount; ++i)
{
const spSlot& slot = *skeleton.slots[i];
if (!slot.attachment)
{
continue;
}
if (slotIsOutRange(slot, startSlotIndex, endSlotIndex))
{
continue;
}
// Early exit if slot is invisible
if (slot.color.a == 0) {
continue;
}
if (slot.attachment->type == SP_ATTACHMENT_REGION)
{
// Early exit if attachment is invisible
spRegionAttachment* attachment = reinterpret_cast<spRegionAttachment*>(slot.attachment);
if (attachment->color.a == 0) {
continue;
}
coordCount += 8;
}
else if (slot.attachment->type == SP_ATTACHMENT_MESH)
{
const spMeshAttachment* mesh = reinterpret_cast<const spMeshAttachment*>(slot.attachment);
// Early exit if attachment is invisible
if (mesh->color.a == 0) {
continue;
}
coordCount += mesh->super.worldVerticesLength;
}
}
return coordCount;
}
void transformWorldVertices(float* dstCoord, int coordCount, const spSkeleton& skeleton, int startSlotIndex, int endSlotIndex)
{
float* dstPtr = dstCoord;
#ifndef NDEBUG
float* const dstEnd = dstCoord + coordCount;
#endif
for (int i = 0; i < skeleton.slotsCount; ++i)
{
/*const*/ spSlot& slot = *skeleton.drawOrder[i]; // match the draw order of SkeletonRenderer::Draw
if (!slot.attachment)
{
continue;
}
if (slotIsOutRange(slot, startSlotIndex, endSlotIndex))
{
continue;
}
// Early exit if slot is invisible
if (slot.color.a == 0) {
continue;
}
if (slot.attachment->type == SP_ATTACHMENT_REGION)
{
spRegionAttachment* attachment = reinterpret_cast<spRegionAttachment*>(slot.attachment);
// Early exit if attachment is invisible
if (attachment->color.a == 0) {
continue;
}
assert(dstPtr + 8 <= dstEnd);
spRegionAttachment_computeWorldVertices(attachment, slot.bone, dstPtr, 0, 2);
dstPtr += 8;
}
else if (slot.attachment->type == SP_ATTACHMENT_MESH)
{
spMeshAttachment* mesh = reinterpret_cast<spMeshAttachment*>(slot.attachment);
// Early exit if attachment is invisible
if (mesh->color.a == 0) {
continue;
}
assert(dstPtr + mesh->super.worldVerticesLength <= dstEnd);
spVertexAttachment_computeWorldVertices(SUPER(mesh), &slot, 0, mesh->super.worldVerticesLength, dstPtr, 0, 2);
dstPtr += mesh->super.worldVerticesLength;
}
}
assert(dstPtr == dstEnd);
}
void interleaveCoordinates(float* __restrict dst, const float* __restrict src, int count, int dstStride)
{
if (dstStride == 2)
{
std::memcpy(dst, src, sizeof(float) * count * 2);
}
else
{
for (int i = 0; i < count; ++i)
{
dst[0] = src[0];
dst[1] = src[1];
dst += dstStride;
src += 2;
}
}
}
BlendFunc makeBlendFunc(int blendMode, bool premultipliedAlpha)
{
BlendFunc blendFunc;
switch (blendMode) {
case SP_BLEND_MODE_ADDITIVE:
blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
blendFunc.dst = GL_ONE;
break;
case SP_BLEND_MODE_MULTIPLY:
blendFunc.src = GL_DST_COLOR;
blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA;
break;
case SP_BLEND_MODE_SCREEN:
blendFunc.src = GL_ONE;
blendFunc.dst = GL_ONE_MINUS_SRC_COLOR;
break;
default:
blendFunc.src = premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
blendFunc.dst = GL_ONE_MINUS_SRC_ALPHA;
break;
}
return blendFunc;
}
bool cullRectangle(const Mat4 &transform, const cocos2d::Rect& rect, const Camera& camera)
{
// Compute rectangle center and half extents in local space
// TODO: Pass the bounding rectangle with this representation directly
const float halfRectWidth = rect.size.width * 0.5f;
const float halfRectHeight = rect.size.height * 0.5f;
const float l_cx = rect.origin.x + halfRectWidth;
const float l_cy = rect.origin.y + halfRectHeight;
// Transform rectangle center to world space
const float w_cx = (l_cx * transform.m[0] + l_cy * transform.m[4]) + transform.m[12];
const float w_cy = (l_cx * transform.m[1] + l_cy * transform.m[5]) + transform.m[13];
// Compute rectangle half extents in world space
const float w_ex = std::abs(halfRectWidth * transform.m[0]) + std::abs(halfRectHeight * transform.m[4]);
const float w_ey = std::abs(halfRectWidth * transform.m[1]) + std::abs(halfRectHeight * transform.m[5]);
// Transform rectangle to clip space
const Mat4& viewMatrix = camera.getViewMatrix();
const Mat4& projectionMatrix = camera.getProjectionMatrix();
const float c_cx = (w_cx + viewMatrix.m[12]) * projectionMatrix.m[0];
const float c_cy = (w_cy + viewMatrix.m[13]) * projectionMatrix.m[5];
const float c_ex = w_ex * projectionMatrix.m[0];
const float c_ey = w_ey * projectionMatrix.m[5];
// The rectangle has z == 0 in world space
// cw = projectionMatrix[11] * vz = -vz = wz -viewMatrix.m[14] = -viewMatrix.m[14]
const float c_w = -viewMatrix.m[14]; // w in clip space
// For each edge, test the rectangle corner closest to it
// If its distance to the edge is negative, the whole rectangle is outside the screen
// Note: the test is conservative and can return false positives in some cases
// The test is done in clip space [-1, +1]
// e.g. left culling <==> (c_cx + c_ex) / cw < -1 <==> (c_cx + c_ex) < -cw
// Left
if (c_cx + c_ex < -c_w)
{
return true;
}
// Right
if (c_cx - c_ex > c_w)
{
return true;
}
// Bottom
if (c_cy + c_ey < -c_w)
{
return true;
}
// Top
if (c_cy - c_ey > c_w)
{
return true;
}
return false;
}
Color4B spColorToColor4B(const spColor& color)
{
return { (GLubyte)(color.r * 255.f), (GLubyte)(color.g * 255.f), (GLubyte)(color.b * 255.f), (GLubyte)(color.a * 255.f) };
}
}