mirror of
https://github.com/EsotericSoftware/spine-runtimes.git
synced 2026-02-04 22:34:53 +08:00
294 lines
8.7 KiB
C++
294 lines
8.7 KiB
C++
/******************************************************************************
|
|
* Spine Runtimes Software License v2.5
|
|
*
|
|
* Copyright (c) 2013-2016, Esoteric Software
|
|
* All rights reserved.
|
|
*
|
|
* You are granted a perpetual, non-exclusive, non-sublicensable, and
|
|
* non-transferable license to use, install, execute, and perform the Spine
|
|
* Runtimes software and derivative works solely for personal or internal
|
|
* use. Without the written permission of Esoteric Software (see Section 2 of
|
|
* the Spine Software License Agreement), you may not (a) modify, translate,
|
|
* adapt, or develop new applications using the Spine Runtimes or otherwise
|
|
* create derivative works or improvements of the Spine Runtimes or (b) remove,
|
|
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
|
|
* or other intellectual property or proprietary rights notices on or in the
|
|
* Software, including any copy thereof. Redistributions in binary or source
|
|
* form must include this license and terms.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
|
|
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include <spine/IkConstraint.h>
|
|
|
|
#include <spine/IkConstraintData.h>
|
|
#include <spine/Skeleton.h>
|
|
#include <spine/Bone.h>
|
|
|
|
#include <spine/BoneData.h>
|
|
|
|
using namespace Spine;
|
|
|
|
RTTI_IMPL(IkConstraint, Constraint)
|
|
|
|
void IkConstraint::apply(Bone &bone, float targetX, float targetY, bool compress, bool stretch, bool uniform, float alpha) {
|
|
Bone *p = bone.getParent();
|
|
float id, x, y, tx, ty, rotationIK;
|
|
if (!bone._appliedValid) bone.updateAppliedTransform();
|
|
id = 1 / (p->_a * p->_d - p->_b * p->_c);
|
|
x = targetX - p->_worldX, y = targetY - p->_worldY;
|
|
tx = (x * p->_d - y * p->_b) * id - bone._ax;
|
|
ty = (y * p->_a - x * p->_c) * id - bone._ay;
|
|
rotationIK = MathUtil::atan2(ty, tx) * RAD_DEG - bone._ashearX - bone._arotation;
|
|
if (bone._ascaleX < 0) rotationIK += 180;
|
|
if (rotationIK > 180) rotationIK -= 360;
|
|
else if (rotationIK < -180) rotationIK += 360;
|
|
float sx = bone._ascaleX;
|
|
float sy = bone._ascaleY;
|
|
if (compress || stretch) {
|
|
float b = bone._data.getLength() * sx, dd = MathUtil::sqrt(tx * tx + ty * ty);
|
|
if ((compress && dd < b) || (stretch && dd > b) && b > 0.0001f) {
|
|
float s = (dd / b - 1) * alpha + 1;
|
|
sx *= s;
|
|
if (uniform) sy *= s;
|
|
}
|
|
}
|
|
bone.updateWorldTransform(bone._ax, bone._ay, bone._arotation + rotationIK * alpha, sx,
|
|
sy, bone._ashearX, bone._ashearY);
|
|
}
|
|
|
|
void IkConstraint::apply(Bone &parent, Bone &child, float targetX, float targetY, int bendDir, bool stretch, float alpha) {
|
|
float px, py, psx, sx, psy;
|
|
float cx, cy, csx, cwx, cwy;
|
|
int o1, o2, s2, u;
|
|
Bone *pp = parent.getParent();
|
|
float tx, ty, dx, dy, dd, l1, l2, a1, a2, r;
|
|
float id, x, y;
|
|
if (alpha == 0) {
|
|
child.updateWorldTransform();
|
|
return;
|
|
}
|
|
if (!parent._appliedValid) parent.updateAppliedTransform();
|
|
if (!child._appliedValid) child.updateAppliedTransform();
|
|
px = parent._ax;
|
|
py = parent._ay;
|
|
psx = parent._ascaleX;
|
|
sx = psx;
|
|
psy = parent._ascaleY;
|
|
csx = child._ascaleX;
|
|
if (psx < 0) {
|
|
psx = -psx;
|
|
o1 = 180;
|
|
s2 = -1;
|
|
} else {
|
|
o1 = 0;
|
|
s2 = 1;
|
|
}
|
|
if (psy < 0) {
|
|
psy = -psy;
|
|
s2 = -s2;
|
|
}
|
|
if (csx < 0) {
|
|
csx = -csx;
|
|
o2 = 180;
|
|
} else
|
|
o2 = 0;
|
|
r = psx - psy;
|
|
cx = child._ax;
|
|
u = (r < 0 ? -r : r) <= 0.0001f;
|
|
if (!u) {
|
|
cy = 0;
|
|
cwx = parent._a * cx + parent._worldX;
|
|
cwy = parent._c * cx + parent._worldY;
|
|
} else {
|
|
cy = child._ay;
|
|
cwx = parent._a * cx + parent._b * cy + parent._worldX;
|
|
cwy = parent._c * cx + parent._d * cy + parent._worldY;
|
|
}
|
|
id = 1 / (pp->_a * pp->_d - pp->_b * pp->_c);
|
|
x = targetX - pp->_worldX;
|
|
y = targetY - pp->_worldY;
|
|
tx = (x * pp->_d - y * pp->_b) * id - px;
|
|
ty = (y * pp->_a - x * pp->_c) * id - py;
|
|
dd = tx * tx + ty * ty;
|
|
x = cwx - pp->_worldX;
|
|
y = cwy - pp->_worldY;
|
|
dx = (x * pp->_d - y * pp->_b) * id - px;
|
|
dy = (y * pp->_a - x * pp->_c) * id - py;
|
|
l1 = MathUtil::sqrt(dx * dx + dy * dy);
|
|
l2 = child.getData().getLength() * csx;
|
|
if (u) {
|
|
float cosine, a, b;
|
|
l2 *= psx;
|
|
cosine = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2);
|
|
if (cosine < -1) cosine = -1;
|
|
else if (cosine > 1) {
|
|
cosine = 1;
|
|
if (stretch && l1 + l2 > 0.0001f) sx *= (MathUtil::sqrt(dd) / (l1 + l2) - 1) * alpha + 1;
|
|
}
|
|
a2 = MathUtil::acos(cosine) * bendDir;
|
|
a = l1 + l2 * cosine;
|
|
b = l2 * MathUtil::sin(a2);
|
|
a1 = MathUtil::atan2(ty * a - tx * b, tx * a + ty * b);
|
|
} else {
|
|
float a = psx * l2, b = psy * l2;
|
|
float aa = a * a, bb = b * b, ll = l1 * l1, ta = MathUtil::atan2(ty, tx);
|
|
float c0 = bb * ll + aa * dd - aa * bb, c1 = -2 * bb * l1, c2 = bb - aa;
|
|
float d = c1 * c1 - 4 * c2 * c0;
|
|
if (d >= 0) {
|
|
float q = MathUtil::sqrt(d), r0, r1;
|
|
if (c1 < 0) q = -q;
|
|
q = -(c1 + q) / 2;
|
|
r0 = q / c2;
|
|
r1 = c0 / q;
|
|
r = MathUtil::abs(r0) < MathUtil::abs(r1) ? r0 : r1;
|
|
if (r * r <= dd) {
|
|
y = MathUtil::sqrt(dd - r * r) * bendDir;
|
|
a1 = ta - MathUtil::atan2(y, r);
|
|
a2 = MathUtil::atan2(y / psy, (r - l1) / psx);
|
|
goto break_outer;
|
|
}
|
|
}
|
|
{
|
|
float minAngle = PI, minX = l1 - a, minDist = minX * minX, minY = 0;
|
|
float maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0;
|
|
c0 = -a * l1 / (aa - bb);
|
|
if (c0 >= -1 && c0 <= 1) {
|
|
c0 = MathUtil::acos(c0);
|
|
x = a * MathUtil::cos(c0) + l1;
|
|
y = b * MathUtil::sin(c0);
|
|
d = x * x + y * y;
|
|
if (d < minDist) {
|
|
minAngle = c0;
|
|
minDist = d;
|
|
minX = x;
|
|
minY = y;
|
|
}
|
|
if (d > maxDist) {
|
|
maxAngle = c0;
|
|
maxDist = d;
|
|
maxX = x;
|
|
maxY = y;
|
|
}
|
|
}
|
|
if (dd <= (minDist + maxDist) / 2) {
|
|
a1 = ta - MathUtil::atan2(minY * bendDir, minX);
|
|
a2 = minAngle * bendDir;
|
|
} else {
|
|
a1 = ta - MathUtil::atan2(maxY * bendDir, maxX);
|
|
a2 = maxAngle * bendDir;
|
|
}
|
|
}
|
|
}
|
|
break_outer:
|
|
{
|
|
float os = MathUtil::atan2(cy, cx) * s2;
|
|
a1 = (a1 - os) * RAD_DEG + o1 - parent._arotation;
|
|
if (a1 > 180) a1 -= 360;
|
|
else if (a1 < -180) a1 += 360;
|
|
parent.updateWorldTransform(px, py, parent._rotation + a1 * alpha, sx, parent._ascaleY, 0, 0);
|
|
a2 = ((a2 + os) * RAD_DEG - child._ashearX) * s2 + o2 - child._arotation;
|
|
if (a2 > 180) a2 -= 360;
|
|
else if (a2 < -180) a2 += 360;
|
|
child.updateWorldTransform(cx, cy, child._arotation + a2 * alpha, child._ascaleX, child._ascaleY,
|
|
child._ashearX, child._ashearY);
|
|
}
|
|
}
|
|
|
|
IkConstraint::IkConstraint(IkConstraintData &data, Skeleton &skeleton) : Constraint(),
|
|
_data(data),
|
|
_bendDirection(data.getBendDirection()),
|
|
_compress(data.getCompress()),
|
|
_stretch(data.getStretch()),
|
|
_mix(data.getMix()),
|
|
_target(skeleton.findBone(
|
|
data.getTarget()->getName())) {
|
|
_bones.ensureCapacity(_data.getBones().size());
|
|
for (size_t i = 0; i < _data.getBones().size(); i++) {
|
|
BoneData *boneData = _data.getBones()[i];
|
|
_bones.add(skeleton.findBone(boneData->getName()));
|
|
}
|
|
}
|
|
|
|
/// Applies the constraint to the constrained bones.
|
|
void IkConstraint::apply() {
|
|
update();
|
|
}
|
|
|
|
void IkConstraint::update() {
|
|
switch (_bones.size()) {
|
|
case 1: {
|
|
Bone *bone0 = _bones[0];
|
|
apply(*bone0, _target->getWorldX(), _target->getWorldY(), _compress, _stretch, _data._uniform, _mix);
|
|
}
|
|
break;
|
|
case 2: {
|
|
Bone *bone0 = _bones[0];
|
|
Bone *bone1 = _bones[1];
|
|
apply(*bone0, *bone1, _target->getWorldX(), _target->getWorldY(), _bendDirection, _stretch, _mix);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
int IkConstraint::getOrder() {
|
|
return _data.getOrder();
|
|
}
|
|
|
|
IkConstraintData &IkConstraint::getData() {
|
|
return _data;
|
|
}
|
|
|
|
Vector<Bone *> &IkConstraint::getBones() {
|
|
return _bones;
|
|
}
|
|
|
|
Bone *IkConstraint::getTarget() {
|
|
return _target;
|
|
}
|
|
|
|
void IkConstraint::setTarget(Bone *inValue) {
|
|
_target = inValue;
|
|
}
|
|
|
|
int IkConstraint::getBendDirection() {
|
|
return _bendDirection;
|
|
}
|
|
|
|
void IkConstraint::setBendDirection(int inValue) {
|
|
_bendDirection = inValue;
|
|
}
|
|
|
|
float IkConstraint::getMix() {
|
|
return _mix;
|
|
}
|
|
|
|
void IkConstraint::setMix(float inValue) {
|
|
_mix = inValue;
|
|
}
|
|
|
|
bool IkConstraint::getStretch() {
|
|
return _stretch;
|
|
}
|
|
|
|
void IkConstraint::setStretch(bool inValue) {
|
|
_stretch = inValue;
|
|
}
|
|
|
|
bool IkConstraint::getCompress() {
|
|
return _compress;
|
|
}
|
|
|
|
void IkConstraint::setCompress(bool inValue) {
|
|
_compress = inValue;
|
|
}
|