spine-runtimes/spine-ts/core/src/PathConstraint.ts
NathanSweet 36000e3c55 Updated to v3.5 (merge dev branch).
# Conflicts:
#	spine-c/src/spine/AnimationState.c
2016-11-15 23:10:23 +01:00

400 lines
14 KiB
TypeScript

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
module spine {
export class PathConstraint implements Constraint {
static NONE = -1; static BEFORE = -2; static AFTER = -3;
data: PathConstraintData;
bones: Array<Bone>;
target: Slot;
position = 0; spacing = 0; rotateMix = 0; translateMix = 0;
spaces = new Array<number>(); positions = new Array<number>();
world = new Array<number>(); curves = new Array<number>(); lengths = new Array<number>();
segments = new Array<number>();
constructor (data: PathConstraintData, skeleton: Skeleton) {
if (data == null) throw new Error("data cannot be null.");
if (skeleton == null) throw new Error("skeleton cannot be null.");
this.data = data;
this.bones = new Array<Bone>();
for (let i = 0, n = data.bones.length; i < n; i++)
this.bones.push(skeleton.findBone(data.bones[i].name));
this.target = skeleton.findSlot(data.target.name);
this.position = data.position;
this.spacing = data.spacing;
this.rotateMix = data.rotateMix;
this.translateMix = data.translateMix;
}
apply () {
this.update();
}
update () {
let attachment = this.target.getAttachment();
if (!(attachment instanceof PathAttachment)) return;
let rotateMix = this.rotateMix, translateMix = this.translateMix;
let translate = translateMix > 0, rotate = rotateMix > 0;
if (!translate && !rotate) return;
let data = this.data;
let spacingMode = data.spacingMode;
let lengthSpacing = spacingMode == SpacingMode.Length;
let rotateMode = data.rotateMode;
let tangents = rotateMode == RotateMode.Tangent, scale = rotateMode == RotateMode.ChainScale;
let boneCount = this.bones.length, spacesCount = tangents ? boneCount : boneCount + 1;
let bones = this.bones;
let spaces = Utils.setArraySize(this.spaces, spacesCount), lengths: Array<number> = null;
let spacing = this.spacing;
if (scale || lengthSpacing) {
if (scale) lengths = Utils.setArraySize(this.lengths, boneCount);
for (let i = 0, n = spacesCount - 1; i < n;) {
let bone = bones[i];
let length = bone.data.length, x = length * bone.a, y = length * bone.c;
length = Math.sqrt(x * x + y * y);
if (scale) lengths[i] = length;
spaces[++i] = lengthSpacing ? Math.max(0, length + spacing) : spacing;
}
} else {
for (let i = 1; i < spacesCount; i++)
spaces[i] = spacing;
}
let positions = this.computeWorldPositions(<PathAttachment>attachment, spacesCount, tangents,
data.positionMode == PositionMode.Percent, spacingMode == SpacingMode.Percent);
let boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation;
let tip = false;
if (offsetRotation == 0)
tip = rotateMode == RotateMode.Chain;
else {
tip = false;
let p = this.target.bone;
offsetRotation *= p.a * p.d - p.b * p.c > 0 ? MathUtils.degRad : -MathUtils.degRad;
}
for (let i = 0, p = 3; i < boneCount; i++, p += 3) {
let bone = bones[i];
bone.worldX += (boneX - bone.worldX) * translateMix;
bone.worldY += (boneY - bone.worldY) * translateMix;
let x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY;
if (scale) {
let length = lengths[i];
if (length != 0) {
let s = (Math.sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1;
bone.a *= s;
bone.c *= s;
}
}
boneX = x;
boneY = y;
if (rotate) {
let a = bone.a, b = bone.b, c = bone.c, d = bone.d, r = 0, cos = 0, sin = 0;
if (tangents)
r = positions[p - 1];
else if (spaces[i + 1] == 0)
r = positions[p + 2];
else
r = Math.atan2(dy, dx);
r -= Math.atan2(c, a);
if (tip) {
cos = Math.cos(r);
sin = Math.sin(r);
let length = bone.data.length;
boneX += (length * (cos * a - sin * c) - dx) * rotateMix;
boneY += (length * (sin * a + cos * c) - dy) * rotateMix;
} else {
r += offsetRotation;
}
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI) //
r += MathUtils.PI2;
r *= rotateMix;
cos = Math.cos(r);
sin = Math.sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
bone.appliedValid = false;
}
}
computeWorldPositions (path: PathAttachment, spacesCount: number, tangents: boolean, percentPosition: boolean,
percentSpacing: boolean) {
let target = this.target;
let position = this.position;
let spaces = this.spaces, out = Utils.setArraySize(this.positions, spacesCount * 3 + 2), world: Array<number> = null;
let closed = path.closed;
let verticesLength = path.worldVerticesLength, curveCount = verticesLength / 6, prevCurve = PathConstraint.NONE;
if (!path.constantSpeed) {
let lengths = path.lengths;
curveCount -= closed ? 1 : 2;
let pathLength = lengths[curveCount];
if (percentPosition) position *= pathLength;
if (percentSpacing) {
for (let i = 0; i < spacesCount; i++)
spaces[i] *= pathLength;
}
world = Utils.setArraySize(this.world, 8);
for (let i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
let space = spaces[i];
position += space;
let p = position;
if (closed) {
p %= pathLength;
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
if (prevCurve != PathConstraint.BEFORE) {
prevCurve = PathConstraint.BEFORE;
path.computeWorldVerticesWith(target, 2, 4, world, 0);
}
this.addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
if (prevCurve != PathConstraint.AFTER) {
prevCurve = PathConstraint.AFTER;
path.computeWorldVerticesWith(target, verticesLength - 6, 4, world, 0);
}
this.addAfterPosition(p - pathLength, world, 0, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
let length = lengths[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
let prev = lengths[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
if (closed && curve == curveCount) {
path.computeWorldVerticesWith(target, verticesLength - 4, 4, world, 0);
path.computeWorldVerticesWith(target, 0, 4, world, 4);
} else
path.computeWorldVerticesWith(target, curve * 6 + 2, 8, world, 0);
}
this.addCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], out, o,
tangents || (i > 0 && space == 0));
}
return out;
}
// World vertices.
if (closed) {
verticesLength += 2;
world = Utils.setArraySize(this.world, verticesLength);
path.computeWorldVerticesWith(target, 2, verticesLength - 4, world, 0);
path.computeWorldVerticesWith(target, 0, 2, world, verticesLength - 4);
world[verticesLength - 2] = world[0];
world[verticesLength - 1] = world[1];
} else {
curveCount--;
verticesLength -= 4;
world = Utils.setArraySize(this.world, verticesLength);
path.computeWorldVerticesWith(target, 2, verticesLength, world, 0);
}
// Curve lengths.
let curves = Utils.setArraySize(this.curves, curveCount);
let pathLength = 0;
let x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
let tmpx = 0, tmpy = 0, dddfx = 0, dddfy = 0, ddfx = 0, ddfy = 0, dfx = 0, dfy = 0;
for (let i = 0, w = 2; i < curveCount; i++, w += 6) {
cx1 = world[w];
cy1 = world[w + 1];
cx2 = world[w + 2];
cy2 = world[w + 3];
x2 = world[w + 4];
y2 = world[w + 5];
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875;
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.75 + tmpx + dddfx * 0.16666667;
dfy = (cy1 - y1) * 0.75 + tmpy + dddfy * 0.16666667;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
curves[i] = pathLength;
x1 = x2;
y1 = y2;
}
if (percentPosition) position *= pathLength;
if (percentSpacing) {
for (let i = 0; i < spacesCount; i++)
spaces[i] *= pathLength;
}
let segments = this.segments;
let curveLength = 0;
for (let i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
let space = spaces[i];
position += space;
let p = position;
if (closed) {
p %= pathLength;
if (p < 0) p += pathLength;
curve = 0;
} else if (p < 0) {
this.addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
this.addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
continue;
}
// Determine curve containing position.
for (;; curve++) {
let length = curves[curve];
if (p > length) continue;
if (curve == 0)
p /= length;
else {
let prev = curves[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
// Curve segment lengths.
if (curve != prevCurve) {
prevCurve = curve;
let ii = curve * 6;
x1 = world[ii];
y1 = world[ii + 1];
cx1 = world[ii + 2];
cy1 = world[ii + 3];
cx2 = world[ii + 4];
cy2 = world[ii + 5];
x2 = world[ii + 6];
y2 = world[ii + 7];
tmpx = (x1 - cx1 * 2 + cx2) * 0.03;
tmpy = (y1 - cy1 * 2 + cy2) * 0.03;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.3 + tmpx + dddfx * 0.16666667;
dfy = (cy1 - y1) * 0.3 + tmpy + dddfy * 0.16666667;
curveLength = Math.sqrt(dfx * dfx + dfy * dfy);
segments[0] = curveLength;
for (ii = 1; ii < 8; ii++) {
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[ii] = curveLength;
}
dfx += ddfx;
dfy += ddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[8] = curveLength;
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[9] = curveLength;
segment = 0;
}
// Weight by segment length.
p *= curveLength;
for (;; segment++) {
let length = segments[segment];
if (p > length) continue;
if (segment == 0)
p /= length;
else {
let prev = segments[segment - 1];
p = segment + (p - prev) / (length - prev);
}
break;
}
this.addCurvePosition(p * 0.1, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || (i > 0 && space == 0));
}
return out;
}
addBeforePosition (p: number, temp: Array<number>, i: number, out: Array<number>, o: number) {
let x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = Math.atan2(dy, dx);
out[o] = x1 + p * Math.cos(r);
out[o + 1] = y1 + p * Math.sin(r);
out[o + 2] = r;
}
addAfterPosition (p: number, temp: Array<number>, i: number, out: Array<number>, o: number) {
let x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = Math.atan2(dy, dx);
out[o] = x1 + p * Math.cos(r);
out[o + 1] = y1 + p * Math.sin(r);
out[o + 2] = r;
}
addCurvePosition (p: number, x1: number, y1: number, cx1: number, cy1: number, cx2: number, cy2: number, x2: number, y2: number,
out: Array<number>, o: number, tangents: boolean) {
if (p == 0 || isNaN(p)) p = 0.0001;
let tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
let ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
let x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
out[o] = x;
out[o + 1] = y;
if (tangents) out[o + 2] = Math.atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
}
getOrder () {
return this.data.order;
}
}
}