2018-08-13 14:09:55 +02:00

995 lines
30 KiB
C++

/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#ifdef SPINE_UE4
#include "SpinePluginPrivatePCH.h"
#endif
#include <spine/AnimationState.h>
#include <spine/Animation.h>
#include <spine/Event.h>
#include <spine/AnimationStateData.h>
#include <spine/Skeleton.h>
#include <spine/RotateTimeline.h>
#include <spine/SkeletonData.h>
#include <spine/Bone.h>
#include <spine/BoneData.h>
#include <spine/AttachmentTimeline.h>
#include <spine/DrawOrderTimeline.h>
using namespace spine;
void dummyOnAnimationEventFunc(AnimationState *state, spine::EventType type, TrackEntry *entry, Event *event = NULL) {
SP_UNUSED(state);
SP_UNUSED(type);
SP_UNUSED(entry);
SP_UNUSED(event);
}
TrackEntry::TrackEntry() : _animation(NULL), _next(NULL), _mixingFrom(NULL), _trackIndex(0), _loop(false),
_eventThreshold(0), _attachmentThreshold(0), _drawOrderThreshold(0), _animationStart(0),
_animationEnd(0), _animationLast(0), _nextAnimationLast(0), _delay(0), _trackTime(0),
_trackLast(0), _nextTrackLast(0), _trackEnd(0), _timeScale(1.0f), _alpha(0), _mixTime(0),
_mixDuration(0), _interruptAlpha(0), _totalAlpha(0), _mixBlend(MixBlend_Replace),
_listener(dummyOnAnimationEventFunc) {
}
TrackEntry::~TrackEntry() { }
int TrackEntry::getTrackIndex() { return _trackIndex; }
Animation *TrackEntry::getAnimation() { return _animation; }
bool TrackEntry::getLoop() { return _loop; }
void TrackEntry::setLoop(bool inValue) { _loop = inValue; }
float TrackEntry::getDelay() { return _delay; }
void TrackEntry::setDelay(float inValue) { _delay = inValue; }
float TrackEntry::getTrackTime() { return _trackTime; }
void TrackEntry::setTrackTime(float inValue) { _trackTime = inValue; }
float TrackEntry::getTrackEnd() { return _trackEnd; }
void TrackEntry::setTrackEnd(float inValue) { _trackEnd = inValue; }
float TrackEntry::getAnimationStart() { return _animationStart; }
void TrackEntry::setAnimationStart(float inValue) { _animationStart = inValue; }
float TrackEntry::getAnimationEnd() { return _animationEnd; }
void TrackEntry::setAnimationEnd(float inValue) { _animationEnd = inValue; }
float TrackEntry::getAnimationLast() { return _animationLast; }
void TrackEntry::setAnimationLast(float inValue) {
_animationLast = inValue;
_nextAnimationLast = inValue;
}
float TrackEntry::getAnimationTime() {
if (_loop) {
float duration = _animationEnd - _animationStart;
if (duration == 0) {
return _animationStart;
}
return MathUtil::fmod(_trackTime, duration) + _animationStart;
}
return MathUtil::min(_trackTime + _animationStart, _animationEnd);
}
float TrackEntry::getTimeScale() { return _timeScale; }
void TrackEntry::setTimeScale(float inValue) { _timeScale = inValue; }
float TrackEntry::getAlpha() { return _alpha; }
void TrackEntry::setAlpha(float inValue) { _alpha = inValue; }
float TrackEntry::getEventThreshold() { return _eventThreshold; }
void TrackEntry::setEventThreshold(float inValue) { _eventThreshold = inValue; }
float TrackEntry::getAttachmentThreshold() { return _attachmentThreshold; }
void TrackEntry::setAttachmentThreshold(float inValue) { _attachmentThreshold = inValue; }
float TrackEntry::getDrawOrderThreshold() { return _drawOrderThreshold; }
void TrackEntry::setDrawOrderThreshold(float inValue) { _drawOrderThreshold = inValue; }
TrackEntry *TrackEntry::getNext() { return _next; }
bool TrackEntry::isComplete() {
return _trackTime >= _animationEnd - _animationStart;
}
float TrackEntry::getMixTime() { return _mixTime; }
void TrackEntry::setMixTime(float inValue) { _mixTime = inValue; }
float TrackEntry::getMixDuration() { return _mixDuration; }
void TrackEntry::setMixDuration(float inValue) { _mixDuration = inValue; }
TrackEntry *TrackEntry::getMixingFrom() { return _mixingFrom; }
void TrackEntry::setMixBlend(MixBlend blend) { _mixBlend = blend; }
MixBlend TrackEntry::getMixBlend() { return _mixBlend; }
void TrackEntry::resetRotationDirections() {
_timelinesRotation.clear();
}
void TrackEntry::setListener(AnimationStateListener inValue) {
_listener = inValue;
}
TrackEntry *TrackEntry::setTimelineData(TrackEntry *to, Vector<TrackEntry *> &mixingToArray, Vector<int> &propertyIDs) {
if (to != NULL) mixingToArray.add(to);
TrackEntry *lastEntry = _mixingFrom != NULL ? _mixingFrom->setTimelineData(this, mixingToArray, propertyIDs) : this;
if (to != NULL) mixingToArray.removeAt(mixingToArray.size() - 1);
size_t mixingToLast = mixingToArray.size() - 1;
Vector<Timeline *> &timelines = _animation->_timelines;
size_t timelinesCount = timelines.size();
_timelineData.setSize(timelinesCount, 0);
_timelineDipMix.setSize(timelinesCount, 0);
// outer:
size_t i = 0;
continue_outer:
for (; i < timelinesCount; ++i) {
int id = timelines[i]->getPropertyId();
if (propertyIDs.contains(id)) {
_timelineData[i] = AnimationState::Subsequent;
} else {
propertyIDs.add(id);
if (to == NULL || !to->hasTimeline(id)) {
_timelineData[i] = AnimationState::First;
} else {
for (int ii = mixingToLast; ii >= 0; --ii) {
TrackEntry *entry = mixingToArray[ii];
if (!entry->hasTimeline(id)) {
if (entry->_mixDuration > 0) {
_timelineData[i] = AnimationState::DipMix;
_timelineDipMix[i] = entry;
i++;
goto continue_outer; // continue outer;
}
break;
}
}
_timelineData[i] = AnimationState::Dip;
}
}
}
return lastEntry;
}
bool TrackEntry::hasTimeline(int inId) {
Vector<Timeline *> &timelines = _animation->_timelines;
for (size_t i = 0, n = timelines.size(); i < n; ++i) {
if (timelines[i]->getPropertyId() == inId) {
return true;
}
}
return false;
}
void TrackEntry::reset() {
_animation = NULL;
_next = NULL;
_mixingFrom = NULL;
_timelineData.clear();
_timelineDipMix.clear();
_timelinesRotation.clear();
_listener = dummyOnAnimationEventFunc;
}
EventQueueEntry::EventQueueEntry(EventType eventType, TrackEntry *trackEntry, Event *event) :
_type(eventType),
_entry(trackEntry),
_event(event) {
}
EventQueue *EventQueue::newEventQueue(AnimationState &state, Pool<TrackEntry> &trackEntryPool) {
return new(__FILE__, __LINE__) EventQueue(state, trackEntryPool);
}
EventQueueEntry EventQueue::newEventQueueEntry(EventType eventType, TrackEntry *entry, Event *event) {
return EventQueueEntry(eventType, entry, event);
}
EventQueue::EventQueue(AnimationState &state, Pool<TrackEntry> &trackEntryPool) : _state(state),
_trackEntryPool(trackEntryPool),
_drainDisabled(false) {
}
EventQueue::~EventQueue() {
}
void EventQueue::start(TrackEntry *entry) {
_eventQueueEntries.add(newEventQueueEntry(EventType_Start, entry));
_state._animationsChanged = true;
}
void EventQueue::interrupt(TrackEntry *entry) {
_eventQueueEntries.add(newEventQueueEntry(EventType_Interrupt, entry));
}
void EventQueue::end(TrackEntry *entry) {
_eventQueueEntries.add(newEventQueueEntry(EventType_End, entry));
_state._animationsChanged = true;
}
void EventQueue::dispose(TrackEntry *entry) {
_eventQueueEntries.add(newEventQueueEntry(EventType_Dispose, entry));
}
void EventQueue::complete(TrackEntry *entry) {
_eventQueueEntries.add(newEventQueueEntry(EventType_Complete, entry));
}
void EventQueue::event(TrackEntry *entry, Event *event) {
_eventQueueEntries.add(newEventQueueEntry(EventType_Event, entry, event));
}
/// Raises all events in the queue and drains the queue.
void EventQueue::drain() {
if (_drainDisabled) {
return;
}
_drainDisabled = true;
AnimationState &state = _state;
// Don't cache _eventQueueEntries.size() so callbacks can queue their own events (eg, call setAnimation in AnimationState_Complete).
for (size_t i = 0; i < _eventQueueEntries.size(); ++i) {
EventQueueEntry *queueEntry = &_eventQueueEntries[i];
TrackEntry *trackEntry = queueEntry->_entry;
switch (queueEntry->_type) {
case EventType_Start:
case EventType_Interrupt:
case EventType_Complete:
trackEntry->_listener(&state, queueEntry->_type, trackEntry, NULL);
state._listener(&state, queueEntry->_type, trackEntry, NULL);
break;
case EventType_End:
trackEntry->_listener(&state, queueEntry->_type, trackEntry, NULL);
state._listener(&state, queueEntry->_type, trackEntry, NULL);
/* Yes, we want to fall through here */
case EventType_Dispose:
trackEntry->_listener(&state, EventType_Dispose, trackEntry, NULL);
state._listener(&state, EventType_Dispose, trackEntry, NULL);
trackEntry->reset();
_trackEntryPool.free(trackEntry);
break;
case EventType_Event:
trackEntry->_listener(&state, queueEntry->_type, trackEntry, queueEntry->_event);
state._listener(&state, queueEntry->_type, trackEntry, queueEntry->_event);
break;
}
}
_eventQueueEntries.clear();
_drainDisabled = false;
}
const int AnimationState::Subsequent = 0;
const int AnimationState::First = 1;
const int AnimationState::Dip = 2;
const int AnimationState::DipMix = 3;
AnimationState::AnimationState(AnimationStateData *data) :
_data(data),
_queue(EventQueue::newEventQueue(*this, _trackEntryPool)),
_animationsChanged(false),
_listener(dummyOnAnimationEventFunc),
_timeScale(1) {
}
AnimationState::~AnimationState() {
for (size_t i = 0; i < _tracks.size(); i++) {
TrackEntry* entry = _tracks[i];
if (entry) {
TrackEntry* from = entry->_mixingFrom;
while (from) {
TrackEntry* curr = from;
from = curr->_mixingFrom;
delete curr;
}
TrackEntry* next = entry->_next;
while (next) {
TrackEntry* curr = next;
next = curr->_next;
delete curr;
}
delete entry;
}
}
delete _queue;
}
void AnimationState::update(float delta) {
delta *= _timeScale;
for (size_t i = 0, n = _tracks.size(); i < n; ++i) {
TrackEntry *currentP = _tracks[i];
if (currentP == NULL) {
continue;
}
TrackEntry &current = *currentP;
current._animationLast = current._nextAnimationLast;
current._trackLast = current._nextTrackLast;
float currentDelta = delta * current._timeScale;
if (current._delay > 0) {
current._delay -= currentDelta;
if (current._delay > 0) {
continue;
}
currentDelta = -current._delay;
current._delay = 0;
}
TrackEntry *next = current._next;
if (next != NULL) {
// When the next entry's delay is passed, change to the next entry, preserving leftover time.
float nextTime = current._trackLast - next->_delay;
if (nextTime >= 0) {
next->_delay = 0;
next->_trackTime = nextTime + (delta * next->_timeScale);
current._trackTime += currentDelta;
setCurrent(i, next, true);
while (next->_mixingFrom != NULL) {
next->_mixTime += currentDelta;
next = next->_mixingFrom;
}
continue;
}
} else if (current._trackLast >= current._trackEnd && current._mixingFrom == NULL) {
// clear the track when there is no next entry, the track end time is reached, and there is no mixingFrom.
_tracks[i] = NULL;
_queue->end(currentP);
disposeNext(currentP);
continue;
}
if (current._mixingFrom != NULL && updateMixingFrom(currentP, delta)) {
// End mixing from entries once all have completed.
TrackEntry *from = current._mixingFrom;
current._mixingFrom = NULL;
while (from != NULL) {
_queue->end(from);
from = from->_mixingFrom;
}
}
current._trackTime += currentDelta;
}
_queue->drain();
}
bool AnimationState::apply(Skeleton &skeleton) {
if (_animationsChanged) {
animationsChanged();
}
bool applied = false;
for (size_t i = 0, n = _tracks.size(); i < n; ++i) {
TrackEntry *currentP = _tracks[i];
if (currentP == NULL || currentP->_delay > 0) {
continue;
}
TrackEntry &current = *currentP;
applied = true;
MixBlend blend = i == 0 ? MixBlend_First : current._mixBlend;
// apply mixing from entries first.
float mix = current._alpha;
if (current._mixingFrom != NULL) {
mix *= applyMixingFrom(currentP, skeleton, blend);
} else if (current._trackTime >= current._trackEnd && current._next == NULL) {
mix = 0; // Set to setup pose the last time the entry will be applied.
}
// apply current entry.
float animationLast = current._animationLast, animationTime = current.getAnimationTime();
size_t timelineCount = current._animation->_timelines.size();
Vector<Timeline *> &timelines = current._animation->_timelines;
if (mix == 1 || blend == MixBlend_Add) {
for (size_t ii = 0; ii < timelineCount; ++ii) {
timelines[ii]->apply(skeleton, animationLast, animationTime, &_events, mix, blend,
MixDirection_In);
}
} else {
Vector<int> &timelineData = current._timelineData;
bool firstFrame = current._timelinesRotation.size() == 0;
if (firstFrame) {
current._timelinesRotation.setSize(timelines.size() << 1, 0);
}
Vector<float> &timelinesRotation = current._timelinesRotation;
for (size_t ii = 0; ii < timelineCount; ++ii) {
Timeline *timeline = timelines[ii];
assert(timeline);
MixBlend timelineBlend = timelineData[ii] == AnimationState::Subsequent ? blend : MixBlend_Setup;
RotateTimeline *rotateTimeline = NULL;
if (timeline->getRTTI().isExactly(RotateTimeline::rtti)) {
rotateTimeline = static_cast<RotateTimeline *>(timeline);
}
if (rotateTimeline != NULL) {
applyRotateTimeline(rotateTimeline, skeleton, animationTime, mix, timelineBlend, timelinesRotation, ii << 1,
firstFrame);
} else {
timeline->apply(skeleton, animationLast, animationTime, &_events, mix, timelineBlend, MixDirection_In);
}
}
}
queueEvents(currentP, animationTime);
_events.clear();
current._nextAnimationLast = animationTime;
current._nextTrackLast = current._trackTime;
}
_queue->drain();
return applied;
}
void AnimationState::clearTracks() {
bool oldDrainDisabled = _queue->_drainDisabled;
_queue->_drainDisabled = true;
for (size_t i = 0, n = _tracks.size(); i < n; ++i) {
clearTrack(i);
}
_tracks.clear();
_queue->_drainDisabled = oldDrainDisabled;
_queue->drain();
}
void AnimationState::clearTrack(size_t trackIndex) {
if (trackIndex >= _tracks.size()) {
return;
}
TrackEntry *current = _tracks[trackIndex];
if (current == NULL) {
return;
}
_queue->end(current);
disposeNext(current);
TrackEntry *entry = current;
while (true) {
TrackEntry *from = entry->_mixingFrom;
if (from == NULL) {
break;
}
_queue->end(from);
entry->_mixingFrom = NULL;
entry = from;
}
_tracks[current->_trackIndex] = NULL;
_queue->drain();
}
TrackEntry *AnimationState::setAnimation(size_t trackIndex, const String &animationName, bool loop) {
Animation *animation = _data->_skeletonData->findAnimation(animationName);
assert(animation != NULL);
return setAnimation(trackIndex, animation, loop);
}
TrackEntry *AnimationState::setAnimation(size_t trackIndex, Animation *animation, bool loop) {
assert(animation != NULL);
bool interrupt = true;
TrackEntry *current = expandToIndex(trackIndex);
if (current != NULL) {
if (current->_nextTrackLast == -1) {
// Don't mix from an entry that was never applied.
_tracks[trackIndex] = current->_mixingFrom;
_queue->interrupt(current);
_queue->end(current);
disposeNext(current);
current = current->_mixingFrom;
interrupt = false;
} else {
disposeNext(current);
}
}
TrackEntry *entry = newTrackEntry(trackIndex, animation, loop, current);
setCurrent(trackIndex, entry, interrupt);
_queue->drain();
return entry;
}
TrackEntry *AnimationState::addAnimation(size_t trackIndex, const String &animationName, bool loop, float delay) {
Animation *animation = _data->_skeletonData->findAnimation(animationName);
assert(animation != NULL);
return addAnimation(trackIndex, animation, loop, delay);
}
TrackEntry *AnimationState::addAnimation(size_t trackIndex, Animation *animation, bool loop, float delay) {
assert(animation != NULL);
TrackEntry *last = expandToIndex(trackIndex);
if (last != NULL) {
while (last->_next != NULL) {
last = last->_next;
}
}
TrackEntry *entry = newTrackEntry(trackIndex, animation, loop, last);
if (last == NULL) {
setCurrent(trackIndex, entry, true);
_queue->drain();
} else {
last->_next = entry;
if (delay <= 0) {
float duration = last->_animationEnd - last->_animationStart;
if (duration != 0) {
if (last->_loop) {
delay += duration * (1 + (int) (last->_trackTime / duration));
} else {
delay += MathUtil::max(duration, last->_trackTime);
}
delay -= _data->getMix(last->_animation, animation);
} else {
delay = last->_trackTime;
}
}
}
entry->_delay = delay;
return entry;
}
TrackEntry *AnimationState::setEmptyAnimation(size_t trackIndex, float mixDuration) {
TrackEntry *entry = setAnimation(trackIndex, AnimationState::getEmptyAnimation(), false);
entry->_mixDuration = mixDuration;
entry->_trackEnd = mixDuration;
return entry;
}
TrackEntry *AnimationState::addEmptyAnimation(size_t trackIndex, float mixDuration, float delay) {
if (delay <= 0) {
delay -= mixDuration;
}
TrackEntry *entry = addAnimation(trackIndex, AnimationState::getEmptyAnimation(), false, delay);
entry->_mixDuration = mixDuration;
entry->_trackEnd = mixDuration;
return entry;
}
void AnimationState::setEmptyAnimations(float mixDuration) {
bool oldDrainDisabled = _queue->_drainDisabled;
_queue->_drainDisabled = true;
for (size_t i = 0, n = _tracks.size(); i < n; ++i) {
TrackEntry *current = _tracks[i];
if (current != NULL) {
setEmptyAnimation(i, mixDuration);
}
}
_queue->_drainDisabled = oldDrainDisabled;
_queue->drain();
}
TrackEntry *AnimationState::getCurrent(size_t trackIndex) {
return trackIndex >= _tracks.size() ? NULL : _tracks[trackIndex];
}
AnimationStateData *AnimationState::getData() {
return _data;
}
Vector<TrackEntry *> &AnimationState::getTracks() {
return _tracks;
}
float AnimationState::getTimeScale() {
return _timeScale;
}
void AnimationState::setTimeScale(float inValue) {
_timeScale = inValue;
}
void AnimationState::setListener(AnimationStateListener inValue) {
_listener = inValue;
}
void AnimationState::disableQueue() {
_queue->_drainDisabled = true;
}
void AnimationState::enableQueue() {
_queue->_drainDisabled = false;
}
Animation *AnimationState::getEmptyAnimation() {
static Vector<Timeline *> timelines;
static Animation ret(String("<empty>"), timelines, 0);
return &ret;
}
void AnimationState::applyRotateTimeline(RotateTimeline *rotateTimeline, Skeleton &skeleton, float time, float alpha,
MixBlend blend, Vector<float> &timelinesRotation, size_t i, bool firstFrame) {
if (firstFrame) {
timelinesRotation[i] = 0;
}
if (alpha == 1) {
rotateTimeline->apply(skeleton, 0, time, NULL, 1, blend, MixDirection_In);
return;
}
Bone *bone = skeleton._bones[rotateTimeline->_boneIndex];
Vector<float>& frames = rotateTimeline->_frames;
if (time < frames[0]) {
if (blend == MixBlend_Setup) {
bone->_rotation = bone->_data._rotation;
}
return;
}
float r2;
if (time >= frames[frames.size() - RotateTimeline::ENTRIES]) {
// Time is after last frame.
r2 = bone->_data._rotation + frames[frames.size() + RotateTimeline::PREV_ROTATION];
} else {
// Interpolate between the previous frame and the current frame.
int frame = Animation::binarySearch(frames, time, RotateTimeline::ENTRIES);
float prevRotation = frames[frame + RotateTimeline::PREV_ROTATION];
float frameTime = frames[frame];
float percent = rotateTimeline->getCurvePercent((frame >> 1) - 1, 1 - (time - frameTime) / (frames[frame +
RotateTimeline::PREV_TIME] -
frameTime));
r2 = frames[frame + RotateTimeline::ROTATION] - prevRotation;
r2 -= (16384 - (int) (16384.499999999996 - r2 / 360)) * 360;
r2 = prevRotation + r2 * percent + bone->_data._rotation;
r2 -= (16384 - (int) (16384.499999999996 - r2 / 360)) * 360;
}
// Mix between rotations using the direction of the shortest route on the first frame while detecting crosses.
float r1 = blend == MixBlend_Setup ? bone->_data._rotation : bone->_rotation;
float total, diff = r2 - r1;
if (diff == 0) {
total = timelinesRotation[i];
} else {
diff -= (16384 - (int) (16384.499999999996 - diff / 360)) * 360;
float lastTotal, lastDiff;
if (firstFrame) {
lastTotal = 0;
lastDiff = diff;
} else {
lastTotal = timelinesRotation[i]; // Angle and direction of mix, including loops.
lastDiff = timelinesRotation[i + 1]; // Difference between bones.
}
bool current = diff > 0, dir = lastTotal >= 0;
// Detect cross at 0 (not 180).
if (MathUtil::sign(lastDiff) != MathUtil::sign(diff) && MathUtil::abs(lastDiff) <= 90) {
// A cross after a 360 rotation is a loop.
if (MathUtil::abs(lastTotal) > 180) {
lastTotal += 360 * MathUtil::sign(lastTotal);
}
dir = current;
}
total = diff + lastTotal - MathUtil::fmod(lastTotal, 360); // Store loops as part of lastTotal.
if (dir != current) {
total += 360 * MathUtil::sign(lastTotal);
}
timelinesRotation[i] = total;
}
timelinesRotation[i + 1] = diff;
r1 += total * alpha;
bone->_rotation = r1 - (16384 - (int) (16384.499999999996 - r1 / 360)) * 360;
}
bool AnimationState::updateMixingFrom(TrackEntry *to, float delta) {
TrackEntry *from = to->_mixingFrom;
if (from == NULL) {
return true;
}
bool finished = updateMixingFrom(from, delta);
from->_animationLast = from->_nextAnimationLast;
from->_trackLast = from->_nextTrackLast;
// Require mixTime > 0 to ensure the mixing from entry was applied at least once.
if (to->_mixTime > 0 && (to->_mixTime >= to->_mixDuration || to->_timeScale == 0)) {
// Require totalAlpha == 0 to ensure mixing is complete, unless mixDuration == 0 (the transition is a single frame).
if (from->_totalAlpha == 0 || to->_mixDuration == 0) {
to->_mixingFrom = from->_mixingFrom;
to->_interruptAlpha = from->_interruptAlpha;
_queue->end(from);
}
return finished;
}
from->_trackTime += delta * from->_timeScale;
to->_mixTime += delta * to->_timeScale;
return false;
}
float AnimationState::applyMixingFrom(TrackEntry *to, Skeleton &skeleton, MixBlend blend) {
TrackEntry *from = to->_mixingFrom;
if (from->_mixingFrom != NULL) {
applyMixingFrom(from, skeleton, blend);
}
float mix;
if (to->_mixDuration == 0) {
// Single frame mix to undo mixingFrom changes.
mix = 1;
if (blend == MixBlend_First) blend = MixBlend_Setup;
} else {
mix = to->_mixTime / to->_mixDuration;
if (mix > 1) {
mix = 1;
}
if (blend != MixBlend_First) blend = from->_mixBlend;
}
Vector<Event *> *eventBuffer = mix < from->_eventThreshold ? &_events : NULL;
bool attachments = mix < from->_attachmentThreshold, drawOrder = mix < from->_drawOrderThreshold;
float animationLast = from->_animationLast, animationTime = from->getAnimationTime();
Vector<Timeline *> &timelines = from->_animation->_timelines;
size_t timelineCount = timelines.size();
float alphaDip = from->_alpha * to->_interruptAlpha, alphaMix = alphaDip * (1 - mix);
if (blend == MixBlend_Add) {
for (size_t i = 0; i < timelineCount; i++)
timelines[i]->apply(skeleton, animationLast, animationTime, eventBuffer, alphaMix, blend, MixDirection_Out);
} else {
Vector<int> &timelineData = from->_timelineData;
Vector<TrackEntry *> &timelineDipMix = from->_timelineDipMix;
bool firstFrame = from->_timelinesRotation.size() == 0;
if (firstFrame) {
from->_timelinesRotation.setSize(timelines.size() << 1, 0);
}
Vector<float> &timelinesRotation = from->_timelinesRotation;
from->_totalAlpha = 0;
for (size_t i = 0; i < timelineCount; i++) {
Timeline *timeline = timelines[i];
MixBlend timelineBlend;
float alpha;
switch (timelineData[i]) {
case AnimationState::Subsequent:
if (!attachments && (timeline->getRTTI().isExactly(AttachmentTimeline::rtti))) continue;
if (!drawOrder && (timeline->getRTTI().isExactly(DrawOrderTimeline::rtti))) continue;
timelineBlend = blend;
alpha = alphaMix;
break;
case AnimationState::First:
timelineBlend = MixBlend_Setup;
alpha = alphaMix;
break;
case AnimationState::Dip:
timelineBlend = MixBlend_Setup;
alpha = alphaDip;
break;
default:
timelineBlend = MixBlend_Setup;
TrackEntry *dipMix = timelineDipMix[i];
alpha = alphaDip * MathUtil::max(0.0f, 1.0f - dipMix->_mixTime / dipMix->_mixDuration);
break;
}
from->_totalAlpha += alpha;
if ((timeline->getRTTI().isExactly(RotateTimeline::rtti))) {
applyRotateTimeline((RotateTimeline*)timeline, skeleton, animationTime, alpha, timelineBlend, timelinesRotation, i << 1,
firstFrame);
} else {
timeline->apply(skeleton, animationLast, animationTime, eventBuffer, alpha, timelineBlend,
MixDirection_Out);
}
}
}
if (to->_mixDuration > 0) {
queueEvents(from, animationTime);
}
_events.clear();
from->_nextAnimationLast = animationTime;
from->_nextTrackLast = from->_trackTime;
return mix;
}
void AnimationState::queueEvents(TrackEntry *entry, float animationTime) {
float animationStart = entry->_animationStart, animationEnd = entry->_animationEnd;
float duration = animationEnd - animationStart;
float trackLastWrapped = MathUtil::fmod(entry->_trackLast, duration);
// Queue events before complete.
size_t i = 0, n = _events.size();
for (; i < n; ++i) {
Event *e = _events[i];
if (e->_time < trackLastWrapped) {
break;
}
if (e->_time > animationEnd) {
// Discard events outside animation start/end.
continue;
}
_queue->event(entry, e);
}
// Queue complete if completed a loop iteration or the animation.
bool complete = false;
if (entry->_loop)
complete = duration == 0 || (trackLastWrapped > MathUtil::fmod(entry->_trackTime, duration));
else
complete = animationTime >= animationEnd && entry->_animationLast < animationEnd;
if (complete) _queue->complete(entry);
// Queue events after complete.
for (; i < n; ++i) {
Event *e = _events[i];
if (e->_time < animationStart) {
// Discard events outside animation start/end.
continue;
}
_queue->event(entry, _events[i]);
}
}
void AnimationState::setCurrent(size_t index, TrackEntry *current, bool interrupt) {
TrackEntry *from = expandToIndex(index);
_tracks[index] = current;
if (from != NULL) {
if (interrupt) {
_queue->interrupt(from);
}
current->_mixingFrom = from;
current->_mixTime = 0;
// Store interrupted mix percentage.
if (from->_mixingFrom != NULL && from->_mixDuration > 0) {
current->_interruptAlpha *= MathUtil::min(1.0f, from->_mixTime / from->_mixDuration);
}
from->_timelinesRotation.clear(); // Reset rotation for mixing out, in case entry was mixed in.
}
_queue->start(current); // triggers animationsChanged
}
TrackEntry *AnimationState::expandToIndex(size_t index) {
if (index < _tracks.size()) {
return _tracks[index];
}
while (index >= _tracks.size()) {
_tracks.add(NULL);
}
return NULL;
}
TrackEntry *AnimationState::newTrackEntry(size_t trackIndex, Animation *animation, bool loop, TrackEntry *last) {
TrackEntry *entryP = _trackEntryPool.obtain(); // Pooling
TrackEntry &entry = *entryP;
entry._trackIndex = trackIndex;
entry._animation = animation;
entry._loop = loop;
entry._eventThreshold = 0;
entry._attachmentThreshold = 0;
entry._drawOrderThreshold = 0;
entry._animationStart = 0;
entry._animationEnd = animation->getDuration();
entry._animationLast = -1;
entry._nextAnimationLast = -1;
entry._delay = 0;
entry._trackTime = 0;
entry._trackLast = -1;
entry._nextTrackLast = -1; // nextTrackLast == -1 signifies a TrackEntry that wasn't applied yet.
entry._trackEnd = std::numeric_limits<float>::max(); // loop ? float.MaxValue : animation.Duration;
entry._timeScale = 1;
entry._alpha = 1;
entry._interruptAlpha = 1;
entry._mixTime = 0;
entry._mixDuration = (last == NULL) ? 0 : _data->getMix(last->_animation, animation);
return entryP;
}
void AnimationState::disposeNext(TrackEntry *entry) {
TrackEntry *next = entry->_next;
while (next != NULL) {
_queue->dispose(next);
next = next->_next;
}
entry->_next = NULL;
}
void AnimationState::animationsChanged() {
_animationsChanged = false;
_propertyIDs.clear();
for (size_t i = 0, n = _tracks.size(); i < n; ++i) {
TrackEntry *entry = _tracks[i];
if (entry != NULL && (i == 0 ||entry->_mixBlend != MixBlend_Add)) {
entry->setTimelineData(NULL, _mixingTo, _propertyIDs);
}
}
}