15446 lines
574 KiB
JavaScript

"use strict";
var spine = (() => {
var __create = Object.create;
var __defProp = Object.defineProperty;
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
var __getOwnPropNames = Object.getOwnPropertyNames;
var __getProtoOf = Object.getPrototypeOf;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __require = /* @__PURE__ */ ((x) => typeof require !== "undefined" ? require : typeof Proxy !== "undefined" ? new Proxy(x, {
get: (a, b) => (typeof require !== "undefined" ? require : a)[b]
}) : x)(function(x) {
if (typeof require !== "undefined")
return require.apply(this, arguments);
throw new Error('Dynamic require of "' + x + '" is not supported');
});
var __export = (target, all) => {
for (var name in all)
__defProp(target, name, { get: all[name], enumerable: true });
};
var __copyProps = (to, from, except, desc) => {
if (from && typeof from === "object" || typeof from === "function") {
for (let key of __getOwnPropNames(from))
if (!__hasOwnProp.call(to, key) && key !== except)
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
}
return to;
};
var __toESM = (mod, isNodeMode, target) => (target = mod != null ? __create(__getProtoOf(mod)) : {}, __copyProps(
// If the importer is in node compatibility mode or this is not an ESM
// file that has been converted to a CommonJS file using a Babel-
// compatible transform (i.e. "__esModule" has not been set), then set
// "default" to the CommonJS "module.exports" for node compatibility.
isNodeMode || !mod || !mod.__esModule ? __defProp(target, "default", { value: mod, enumerable: true }) : target,
mod
));
var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
var __publicField = (obj, key, value) => {
__defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value);
return value;
};
// spine-phaser-v3/src/index.ts
var src_exports = {};
__export(src_exports, {
Alpha: () => Alpha,
AlphaMixin: () => AlphaMixin,
AlphaTimeline: () => AlphaTimeline,
Animation: () => Animation,
AnimationState: () => AnimationState,
AnimationStateAdapter: () => AnimationStateAdapter,
AnimationStateData: () => AnimationStateData,
AssetManager: () => AssetManager,
AssetManagerBase: () => AssetManagerBase,
AtlasAttachmentLoader: () => AtlasAttachmentLoader,
Attachment: () => Attachment,
AttachmentTimeline: () => AttachmentTimeline,
BinaryInput: () => BinaryInput,
BlendMode: () => BlendMode,
Bone: () => Bone,
BoneData: () => BoneData,
BoundingBoxAttachment: () => BoundingBoxAttachment,
CURRENT: () => CURRENT,
CameraController: () => CameraController,
ClippingAttachment: () => ClippingAttachment,
Color: () => Color,
Color2Attribute: () => Color2Attribute,
ColorAttribute: () => ColorAttribute,
ComputedSize: () => ComputedSize,
ComputedSizeMixin: () => ComputedSizeMixin,
ConstraintData: () => ConstraintData,
CurveTimeline: () => CurveTimeline,
CurveTimeline1: () => CurveTimeline1,
CurveTimeline2: () => CurveTimeline2,
DebugUtils: () => DebugUtils,
DeformTimeline: () => DeformTimeline,
Depth: () => Depth,
DepthMixin: () => DepthMixin,
Downloader: () => Downloader,
DrawOrderTimeline: () => DrawOrderTimeline,
Event: () => Event,
EventData: () => EventData,
EventQueue: () => EventQueue,
EventTimeline: () => EventTimeline,
EventType: () => EventType,
FIRST: () => FIRST,
FakeTexture: () => FakeTexture,
Flip: () => Flip,
FlipMixin: () => FlipMixin,
GLTexture: () => GLTexture,
HOLD_FIRST: () => HOLD_FIRST,
HOLD_MIX: () => HOLD_MIX,
HOLD_SUBSEQUENT: () => HOLD_SUBSEQUENT,
IkConstraint: () => IkConstraint,
IkConstraintData: () => IkConstraintData,
IkConstraintTimeline: () => IkConstraintTimeline,
Inherit: () => Inherit,
InheritTimeline: () => InheritTimeline,
Input: () => Input,
IntSet: () => IntSet,
Interpolation: () => Interpolation,
LoadingScreen: () => LoadingScreen,
M00: () => M00,
M01: () => M01,
M02: () => M02,
M03: () => M03,
M10: () => M10,
M11: () => M11,
M12: () => M12,
M13: () => M13,
M20: () => M20,
M21: () => M21,
M22: () => M22,
M23: () => M23,
M30: () => M30,
M31: () => M31,
M32: () => M32,
M33: () => M33,
ManagedWebGLRenderingContext: () => ManagedWebGLRenderingContext,
MathUtils: () => MathUtils,
Matrix4: () => Matrix42,
Mesh: () => Mesh,
MeshAttachment: () => MeshAttachment,
MixBlend: () => MixBlend,
MixDirection: () => MixDirection,
Origin: () => Origin,
OriginMixin: () => OriginMixin,
OrthoCamera: () => OrthoCamera,
PathAttachment: () => PathAttachment,
PathConstraint: () => PathConstraint,
PathConstraintData: () => PathConstraintData,
PathConstraintMixTimeline: () => PathConstraintMixTimeline,
PathConstraintPositionTimeline: () => PathConstraintPositionTimeline,
PathConstraintSpacingTimeline: () => PathConstraintSpacingTimeline,
Physics: () => Physics,
PhysicsConstraintDampingTimeline: () => PhysicsConstraintDampingTimeline,
PhysicsConstraintGravityTimeline: () => PhysicsConstraintGravityTimeline,
PhysicsConstraintInertiaTimeline: () => PhysicsConstraintInertiaTimeline,
PhysicsConstraintMassTimeline: () => PhysicsConstraintMassTimeline,
PhysicsConstraintMixTimeline: () => PhysicsConstraintMixTimeline,
PhysicsConstraintResetTimeline: () => PhysicsConstraintResetTimeline,
PhysicsConstraintStrengthTimeline: () => PhysicsConstraintStrengthTimeline,
PhysicsConstraintTimeline: () => PhysicsConstraintTimeline,
PhysicsConstraintWindTimeline: () => PhysicsConstraintWindTimeline,
PointAttachment: () => PointAttachment,
PolygonBatcher: () => PolygonBatcher,
Pool: () => Pool,
Position2Attribute: () => Position2Attribute,
Position3Attribute: () => Position3Attribute,
PositionMode: () => PositionMode,
Pow: () => Pow,
PowOut: () => PowOut,
RGB2Timeline: () => RGB2Timeline,
RGBA2Timeline: () => RGBA2Timeline,
RGBATimeline: () => RGBATimeline,
RGBTimeline: () => RGBTimeline,
RegionAttachment: () => RegionAttachment,
ResizeMode: () => ResizeMode,
RotateMode: () => RotateMode,
RotateTimeline: () => RotateTimeline,
SETUP: () => SETUP,
SUBSEQUENT: () => SUBSEQUENT,
ScaleTimeline: () => ScaleTimeline,
ScaleXTimeline: () => ScaleXTimeline,
ScaleYTimeline: () => ScaleYTimeline,
SceneRenderer: () => SceneRenderer,
ScrollFactor: () => ScrollFactor,
ScrollFactorMixin: () => ScrollFactorMixin,
SequenceTimeline: () => SequenceTimeline,
SetupPoseBoundsProvider: () => SetupPoseBoundsProvider,
Shader: () => Shader,
ShapeRenderer: () => ShapeRenderer,
ShapeType: () => ShapeType,
ShearTimeline: () => ShearTimeline,
ShearXTimeline: () => ShearXTimeline,
ShearYTimeline: () => ShearYTimeline,
Skeleton: () => Skeleton,
SkeletonBinary: () => SkeletonBinary,
SkeletonBounds: () => SkeletonBounds,
SkeletonClipping: () => SkeletonClipping,
SkeletonData: () => SkeletonData,
SkeletonDebugRenderer: () => SkeletonDebugRenderer,
SkeletonJson: () => SkeletonJson,
SkeletonRenderer: () => SkeletonRenderer,
Skin: () => Skin,
SkinEntry: () => SkinEntry,
SkinsAndAnimationBoundsProvider: () => SkinsAndAnimationBoundsProvider,
Slot: () => Slot,
SlotData: () => SlotData,
SpacingMode: () => SpacingMode,
SpineCanvas: () => SpineCanvas,
SpineGameObject: () => SpineGameObject,
SpinePlugin: () => SpinePlugin,
StringSet: () => StringSet,
TexCoordAttribute: () => TexCoordAttribute,
Texture: () => Texture,
TextureAtlas: () => TextureAtlas,
TextureAtlasPage: () => TextureAtlasPage,
TextureAtlasRegion: () => TextureAtlasRegion,
TextureFilter: () => TextureFilter,
TextureRegion: () => TextureRegion,
TextureWrap: () => TextureWrap,
TimeKeeper: () => TimeKeeper,
Timeline: () => Timeline,
Touch: () => Touch,
TrackEntry: () => TrackEntry,
Transform: () => Transform,
TransformConstraint: () => TransformConstraint,
TransformConstraintData: () => TransformConstraintData,
TransformConstraintTimeline: () => TransformConstraintTimeline,
TransformMixin: () => TransformMixin,
TranslateTimeline: () => TranslateTimeline,
TranslateXTimeline: () => TranslateXTimeline,
TranslateYTimeline: () => TranslateYTimeline,
Triangulator: () => Triangulator,
Utils: () => Utils,
Vector2: () => Vector2,
Vector3: () => Vector3,
VertexAttachment: () => VertexAttachment,
VertexAttribute: () => VertexAttribute,
VertexAttributeType: () => VertexAttributeType,
Visible: () => Visible,
VisibleMixin: () => VisibleMixin,
WindowedMean: () => WindowedMean,
createMixin: () => createMixin
});
// spine-phaser-v3/src/require-shim.ts
if (typeof window !== "undefined" && window.Phaser) {
let prevRequire = window.require;
window.require = (x) => {
if (prevRequire)
return prevRequire(x);
else if (x === "Phaser")
return window.Phaser;
};
}
// spine-phaser-v3/src/SpinePlugin.ts
var Phaser2 = __toESM(__require("Phaser"), 1);
// spine-phaser-v3/src/keys.ts
var SPINE_SKELETON_FILE_CACHE_KEY = "esotericsoftware.spine.skeletonFile.cache";
var SPINE_ATLAS_CACHE_KEY = "esotericsoftware.spine.atlas.cache";
var SPINE_SKELETON_DATA_FILE_TYPE = "spineSkeletonData";
var SPINE_ATLAS_FILE_TYPE = "spineAtlasData";
var SPINE_GAME_OBJECT_TYPE = "spine";
// spine-core/src/Utils.ts
var IntSet = class {
array = new Array();
add(value) {
let contains = this.contains(value);
this.array[value | 0] = value | 0;
return !contains;
}
contains(value) {
return this.array[value | 0] != void 0;
}
remove(value) {
this.array[value | 0] = void 0;
}
clear() {
this.array.length = 0;
}
};
var StringSet = class {
entries = {};
size = 0;
add(value) {
let contains = this.entries[value];
this.entries[value] = true;
if (!contains) {
this.size++;
return true;
}
return false;
}
addAll(values) {
let oldSize = this.size;
for (var i = 0, n = values.length; i < n; i++)
this.add(values[i]);
return oldSize != this.size;
}
contains(value) {
return this.entries[value];
}
clear() {
this.entries = {};
this.size = 0;
}
};
var _Color = class {
constructor(r = 0, g = 0, b = 0, a = 0) {
this.r = r;
this.g = g;
this.b = b;
this.a = a;
}
set(r, g, b, a) {
this.r = r;
this.g = g;
this.b = b;
this.a = a;
return this.clamp();
}
setFromColor(c) {
this.r = c.r;
this.g = c.g;
this.b = c.b;
this.a = c.a;
return this;
}
setFromString(hex) {
hex = hex.charAt(0) == "#" ? hex.substr(1) : hex;
this.r = parseInt(hex.substr(0, 2), 16) / 255;
this.g = parseInt(hex.substr(2, 2), 16) / 255;
this.b = parseInt(hex.substr(4, 2), 16) / 255;
this.a = hex.length != 8 ? 1 : parseInt(hex.substr(6, 2), 16) / 255;
return this;
}
add(r, g, b, a) {
this.r += r;
this.g += g;
this.b += b;
this.a += a;
return this.clamp();
}
clamp() {
if (this.r < 0)
this.r = 0;
else if (this.r > 1)
this.r = 1;
if (this.g < 0)
this.g = 0;
else if (this.g > 1)
this.g = 1;
if (this.b < 0)
this.b = 0;
else if (this.b > 1)
this.b = 1;
if (this.a < 0)
this.a = 0;
else if (this.a > 1)
this.a = 1;
return this;
}
static rgba8888ToColor(color, value) {
color.r = ((value & 4278190080) >>> 24) / 255;
color.g = ((value & 16711680) >>> 16) / 255;
color.b = ((value & 65280) >>> 8) / 255;
color.a = (value & 255) / 255;
}
static rgb888ToColor(color, value) {
color.r = ((value & 16711680) >>> 16) / 255;
color.g = ((value & 65280) >>> 8) / 255;
color.b = (value & 255) / 255;
}
toRgb888() {
const hex = (x) => ("0" + (x * 255).toString(16)).slice(-2);
return Number("0x" + hex(this.r) + hex(this.g) + hex(this.b));
}
static fromString(hex) {
return new _Color().setFromString(hex);
}
};
var Color = _Color;
__publicField(Color, "WHITE", new _Color(1, 1, 1, 1));
__publicField(Color, "RED", new _Color(1, 0, 0, 1));
__publicField(Color, "GREEN", new _Color(0, 1, 0, 1));
__publicField(Color, "BLUE", new _Color(0, 0, 1, 1));
__publicField(Color, "MAGENTA", new _Color(1, 0, 1, 1));
var _MathUtils = class {
static clamp(value, min, max) {
if (value < min)
return min;
if (value > max)
return max;
return value;
}
static cosDeg(degrees) {
return Math.cos(degrees * _MathUtils.degRad);
}
static sinDeg(degrees) {
return Math.sin(degrees * _MathUtils.degRad);
}
static atan2Deg(y, x) {
return Math.atan2(y, x) * _MathUtils.degRad;
}
static signum(value) {
return value > 0 ? 1 : value < 0 ? -1 : 0;
}
static toInt(x) {
return x > 0 ? Math.floor(x) : Math.ceil(x);
}
static cbrt(x) {
let y = Math.pow(Math.abs(x), 1 / 3);
return x < 0 ? -y : y;
}
static randomTriangular(min, max) {
return _MathUtils.randomTriangularWith(min, max, (min + max) * 0.5);
}
static randomTriangularWith(min, max, mode) {
let u = Math.random();
let d = max - min;
if (u <= (mode - min) / d)
return min + Math.sqrt(u * d * (mode - min));
return max - Math.sqrt((1 - u) * d * (max - mode));
}
static isPowerOfTwo(value) {
return value && (value & value - 1) === 0;
}
};
var MathUtils = _MathUtils;
__publicField(MathUtils, "PI", 3.1415927);
__publicField(MathUtils, "PI2", _MathUtils.PI * 2);
__publicField(MathUtils, "invPI2", 1 / _MathUtils.PI2);
__publicField(MathUtils, "radiansToDegrees", 180 / _MathUtils.PI);
__publicField(MathUtils, "radDeg", _MathUtils.radiansToDegrees);
__publicField(MathUtils, "degreesToRadians", _MathUtils.PI / 180);
__publicField(MathUtils, "degRad", _MathUtils.degreesToRadians);
var Interpolation = class {
apply(start, end, a) {
return start + (end - start) * this.applyInternal(a);
}
};
var Pow = class extends Interpolation {
power = 2;
constructor(power) {
super();
this.power = power;
}
applyInternal(a) {
if (a <= 0.5)
return Math.pow(a * 2, this.power) / 2;
return Math.pow((a - 1) * 2, this.power) / (this.power % 2 == 0 ? -2 : 2) + 1;
}
};
var PowOut = class extends Pow {
constructor(power) {
super(power);
}
applyInternal(a) {
return Math.pow(a - 1, this.power) * (this.power % 2 == 0 ? -1 : 1) + 1;
}
};
var _Utils = class {
static arrayCopy(source, sourceStart, dest, destStart, numElements) {
for (let i = sourceStart, j = destStart; i < sourceStart + numElements; i++, j++) {
dest[j] = source[i];
}
}
static arrayFill(array, fromIndex, toIndex, value) {
for (let i = fromIndex; i < toIndex; i++)
array[i] = value;
}
static setArraySize(array, size, value = 0) {
let oldSize = array.length;
if (oldSize == size)
return array;
array.length = size;
if (oldSize < size) {
for (let i = oldSize; i < size; i++)
array[i] = value;
}
return array;
}
static ensureArrayCapacity(array, size, value = 0) {
if (array.length >= size)
return array;
return _Utils.setArraySize(array, size, value);
}
static newArray(size, defaultValue) {
let array = new Array(size);
for (let i = 0; i < size; i++)
array[i] = defaultValue;
return array;
}
static newFloatArray(size) {
if (_Utils.SUPPORTS_TYPED_ARRAYS)
return new Float32Array(size);
else {
let array = new Array(size);
for (let i = 0; i < array.length; i++)
array[i] = 0;
return array;
}
}
static newShortArray(size) {
if (_Utils.SUPPORTS_TYPED_ARRAYS)
return new Int16Array(size);
else {
let array = new Array(size);
for (let i = 0; i < array.length; i++)
array[i] = 0;
return array;
}
}
static toFloatArray(array) {
return _Utils.SUPPORTS_TYPED_ARRAYS ? new Float32Array(array) : array;
}
static toSinglePrecision(value) {
return _Utils.SUPPORTS_TYPED_ARRAYS ? Math.fround(value) : value;
}
// This function is used to fix WebKit 602 specific issue described at http://esotericsoftware.com/forum/iOS-10-disappearing-graphics-10109
static webkit602BugfixHelper(alpha, blend) {
}
static contains(array, element, identity = true) {
for (var i = 0; i < array.length; i++)
if (array[i] == element)
return true;
return false;
}
static enumValue(type, name) {
return type[name[0].toUpperCase() + name.slice(1)];
}
};
var Utils = _Utils;
__publicField(Utils, "SUPPORTS_TYPED_ARRAYS", typeof Float32Array !== "undefined");
var DebugUtils = class {
static logBones(skeleton) {
for (let i = 0; i < skeleton.bones.length; i++) {
let bone = skeleton.bones[i];
console.log(bone.data.name + ", " + bone.a + ", " + bone.b + ", " + bone.c + ", " + bone.d + ", " + bone.worldX + ", " + bone.worldY);
}
}
};
var Pool = class {
items = new Array();
instantiator;
constructor(instantiator) {
this.instantiator = instantiator;
}
obtain() {
return this.items.length > 0 ? this.items.pop() : this.instantiator();
}
free(item) {
if (item.reset)
item.reset();
this.items.push(item);
}
freeAll(items) {
for (let i = 0; i < items.length; i++)
this.free(items[i]);
}
clear() {
this.items.length = 0;
}
};
var Vector2 = class {
constructor(x = 0, y = 0) {
this.x = x;
this.y = y;
}
set(x, y) {
this.x = x;
this.y = y;
return this;
}
length() {
let x = this.x;
let y = this.y;
return Math.sqrt(x * x + y * y);
}
normalize() {
let len = this.length();
if (len != 0) {
this.x /= len;
this.y /= len;
}
return this;
}
};
var TimeKeeper = class {
maxDelta = 0.064;
framesPerSecond = 0;
delta = 0;
totalTime = 0;
lastTime = Date.now() / 1e3;
frameCount = 0;
frameTime = 0;
update() {
let now = Date.now() / 1e3;
this.delta = now - this.lastTime;
this.frameTime += this.delta;
this.totalTime += this.delta;
if (this.delta > this.maxDelta)
this.delta = this.maxDelta;
this.lastTime = now;
this.frameCount++;
if (this.frameTime > 1) {
this.framesPerSecond = this.frameCount / this.frameTime;
this.frameTime = 0;
this.frameCount = 0;
}
}
};
var WindowedMean = class {
values;
addedValues = 0;
lastValue = 0;
mean = 0;
dirty = true;
constructor(windowSize = 32) {
this.values = new Array(windowSize);
}
hasEnoughData() {
return this.addedValues >= this.values.length;
}
addValue(value) {
if (this.addedValues < this.values.length)
this.addedValues++;
this.values[this.lastValue++] = value;
if (this.lastValue > this.values.length - 1)
this.lastValue = 0;
this.dirty = true;
}
getMean() {
if (this.hasEnoughData()) {
if (this.dirty) {
let mean = 0;
for (let i = 0; i < this.values.length; i++)
mean += this.values[i];
this.mean = mean / this.values.length;
this.dirty = false;
}
return this.mean;
}
return 0;
}
};
// spine-core/src/attachments/Attachment.ts
var Attachment = class {
name;
constructor(name) {
if (!name)
throw new Error("name cannot be null.");
this.name = name;
}
};
var _VertexAttachment = class extends Attachment {
/** The unique ID for this attachment. */
id = _VertexAttachment.nextID++;
/** The bones which affect the {@link #getVertices()}. The array entries are, for each vertex, the number of bones affecting
* the vertex followed by that many bone indices, which is the index of the bone in {@link Skeleton#bones}. Will be null
* if this attachment has no weights. */
bones = null;
/** The vertex positions in the bone's coordinate system. For a non-weighted attachment, the values are `x,y`
* entries for each vertex. For a weighted attachment, the values are `x,y,weight` entries for each bone affecting
* each vertex. */
vertices = [];
/** The maximum number of world vertex values that can be output by
* {@link #computeWorldVertices()} using the `count` parameter. */
worldVerticesLength = 0;
/** Timelines for the timeline attachment are also applied to this attachment.
* May be null if no attachment-specific timelines should be applied. */
timelineAttachment = this;
constructor(name) {
super(name);
}
/** Transforms the attachment's local {@link #vertices} to world coordinates. If the slot's {@link Slot#deform} is
* not empty, it is used to deform the vertices.
*
* See [World transforms](http://esotericsoftware.com/spine-runtime-skeletons#World-transforms) in the Spine
* Runtimes Guide.
* @param start The index of the first {@link #vertices} value to transform. Each vertex has 2 values, x and y.
* @param count The number of world vertex values to output. Must be <= {@link #worldVerticesLength} - `start`.
* @param worldVertices The output world vertices. Must have a length >= `offset` + `count` *
* `stride` / 2.
* @param offset The `worldVertices` index to begin writing values.
* @param stride The number of `worldVertices` entries between the value pairs written. */
computeWorldVertices(slot, start, count, worldVertices2, offset, stride) {
count = offset + (count >> 1) * stride;
let skeleton = slot.bone.skeleton;
let deformArray = slot.deform;
let vertices = this.vertices;
let bones = this.bones;
if (!bones) {
if (deformArray.length > 0)
vertices = deformArray;
let bone = slot.bone;
let x = bone.worldX;
let y = bone.worldY;
let a = bone.a, b = bone.b, c = bone.c, d = bone.d;
for (let v2 = start, w = offset; w < count; v2 += 2, w += stride) {
let vx = vertices[v2], vy = vertices[v2 + 1];
worldVertices2[w] = vx * a + vy * b + x;
worldVertices2[w + 1] = vx * c + vy * d + y;
}
return;
}
let v = 0, skip = 0;
for (let i = 0; i < start; i += 2) {
let n = bones[v];
v += n + 1;
skip += n;
}
let skeletonBones = skeleton.bones;
if (deformArray.length == 0) {
for (let w = offset, b = skip * 3; w < count; w += stride) {
let wx = 0, wy = 0;
let n = bones[v++];
n += v;
for (; v < n; v++, b += 3) {
let bone = skeletonBones[bones[v]];
let vx = vertices[b], vy = vertices[b + 1], weight = vertices[b + 2];
wx += (vx * bone.a + vy * bone.b + bone.worldX) * weight;
wy += (vx * bone.c + vy * bone.d + bone.worldY) * weight;
}
worldVertices2[w] = wx;
worldVertices2[w + 1] = wy;
}
} else {
let deform = deformArray;
for (let w = offset, b = skip * 3, f = skip << 1; w < count; w += stride) {
let wx = 0, wy = 0;
let n = bones[v++];
n += v;
for (; v < n; v++, b += 3, f += 2) {
let bone = skeletonBones[bones[v]];
let vx = vertices[b] + deform[f], vy = vertices[b + 1] + deform[f + 1], weight = vertices[b + 2];
wx += (vx * bone.a + vy * bone.b + bone.worldX) * weight;
wy += (vx * bone.c + vy * bone.d + bone.worldY) * weight;
}
worldVertices2[w] = wx;
worldVertices2[w + 1] = wy;
}
}
}
/** Does not copy id (generated) or name (set on construction). **/
copyTo(attachment) {
if (this.bones) {
attachment.bones = new Array(this.bones.length);
Utils.arrayCopy(this.bones, 0, attachment.bones, 0, this.bones.length);
} else
attachment.bones = null;
if (this.vertices) {
attachment.vertices = Utils.newFloatArray(this.vertices.length);
Utils.arrayCopy(this.vertices, 0, attachment.vertices, 0, this.vertices.length);
}
attachment.worldVerticesLength = this.worldVerticesLength;
attachment.timelineAttachment = this.timelineAttachment;
}
};
var VertexAttachment = _VertexAttachment;
__publicField(VertexAttachment, "nextID", 0);
// spine-core/src/attachments/Sequence.ts
var _Sequence = class {
id = _Sequence.nextID();
regions;
start = 0;
digits = 0;
/** The index of the region to show for the setup pose. */
setupIndex = 0;
constructor(count) {
this.regions = new Array(count);
}
copy() {
let copy = new _Sequence(this.regions.length);
Utils.arrayCopy(this.regions, 0, copy.regions, 0, this.regions.length);
copy.start = this.start;
copy.digits = this.digits;
copy.setupIndex = this.setupIndex;
return copy;
}
apply(slot, attachment) {
let index = slot.sequenceIndex;
if (index == -1)
index = this.setupIndex;
if (index >= this.regions.length)
index = this.regions.length - 1;
let region = this.regions[index];
if (attachment.region != region) {
attachment.region = region;
attachment.updateRegion();
}
}
getPath(basePath, index) {
let result = basePath;
let frame = (this.start + index).toString();
for (let i = this.digits - frame.length; i > 0; i--)
result += "0";
result += frame;
return result;
}
static nextID() {
return _Sequence._nextID++;
}
};
var Sequence = _Sequence;
__publicField(Sequence, "_nextID", 0);
var SequenceMode = /* @__PURE__ */ ((SequenceMode2) => {
SequenceMode2[SequenceMode2["hold"] = 0] = "hold";
SequenceMode2[SequenceMode2["once"] = 1] = "once";
SequenceMode2[SequenceMode2["loop"] = 2] = "loop";
SequenceMode2[SequenceMode2["pingpong"] = 3] = "pingpong";
SequenceMode2[SequenceMode2["onceReverse"] = 4] = "onceReverse";
SequenceMode2[SequenceMode2["loopReverse"] = 5] = "loopReverse";
SequenceMode2[SequenceMode2["pingpongReverse"] = 6] = "pingpongReverse";
return SequenceMode2;
})(SequenceMode || {});
var SequenceModeValues = [
0 /* hold */,
1 /* once */,
2 /* loop */,
3 /* pingpong */,
4 /* onceReverse */,
5 /* loopReverse */,
6 /* pingpongReverse */
];
// spine-core/src/Animation.ts
var Animation = class {
/** The animation's name, which is unique across all animations in the skeleton. */
name;
timelines = [];
timelineIds = new StringSet();
/** The duration of the animation in seconds, which is the highest time of all keys in the timeline. */
duration;
constructor(name, timelines, duration) {
if (!name)
throw new Error("name cannot be null.");
this.name = name;
this.setTimelines(timelines);
this.duration = duration;
}
setTimelines(timelines) {
if (!timelines)
throw new Error("timelines cannot be null.");
this.timelines = timelines;
this.timelineIds.clear();
for (var i = 0; i < timelines.length; i++)
this.timelineIds.addAll(timelines[i].getPropertyIds());
}
hasTimeline(ids) {
for (let i = 0; i < ids.length; i++)
if (this.timelineIds.contains(ids[i]))
return true;
return false;
}
/** Applies all the animation's timelines to the specified skeleton.
*
* See Timeline {@link Timeline#apply(Skeleton, float, float, Array, float, MixBlend, MixDirection)}.
* @param loop If true, the animation repeats after {@link #getDuration()}.
* @param events May be null to ignore fired events. */
apply(skeleton, lastTime, time, loop, events, alpha, blend, direction) {
if (!skeleton)
throw new Error("skeleton cannot be null.");
if (loop && this.duration != 0) {
time %= this.duration;
if (lastTime > 0)
lastTime %= this.duration;
}
let timelines = this.timelines;
for (let i = 0, n = timelines.length; i < n; i++)
timelines[i].apply(skeleton, lastTime, time, events, alpha, blend, direction);
}
};
var MixBlend = /* @__PURE__ */ ((MixBlend2) => {
MixBlend2[MixBlend2["setup"] = 0] = "setup";
MixBlend2[MixBlend2["first"] = 1] = "first";
MixBlend2[MixBlend2["replace"] = 2] = "replace";
MixBlend2[MixBlend2["add"] = 3] = "add";
return MixBlend2;
})(MixBlend || {});
var MixDirection = /* @__PURE__ */ ((MixDirection2) => {
MixDirection2[MixDirection2["mixIn"] = 0] = "mixIn";
MixDirection2[MixDirection2["mixOut"] = 1] = "mixOut";
return MixDirection2;
})(MixDirection || {});
var Property = {
rotate: 0,
x: 1,
y: 2,
scaleX: 3,
scaleY: 4,
shearX: 5,
shearY: 6,
inherit: 7,
rgb: 8,
alpha: 9,
rgb2: 10,
attachment: 11,
deform: 12,
event: 13,
drawOrder: 14,
ikConstraint: 15,
transformConstraint: 16,
pathConstraintPosition: 17,
pathConstraintSpacing: 18,
pathConstraintMix: 19,
physicsConstraintInertia: 20,
physicsConstraintStrength: 21,
physicsConstraintDamping: 22,
physicsConstraintMass: 23,
physicsConstraintWind: 24,
physicsConstraintGravity: 25,
physicsConstraintMix: 26,
physicsConstraintReset: 27,
sequence: 28
};
var Timeline = class {
propertyIds;
frames;
constructor(frameCount, propertyIds) {
this.propertyIds = propertyIds;
this.frames = Utils.newFloatArray(frameCount * this.getFrameEntries());
}
getPropertyIds() {
return this.propertyIds;
}
getFrameEntries() {
return 1;
}
getFrameCount() {
return this.frames.length / this.getFrameEntries();
}
getDuration() {
return this.frames[this.frames.length - this.getFrameEntries()];
}
static search1(frames, time) {
let n = frames.length;
for (let i = 1; i < n; i++)
if (frames[i] > time)
return i - 1;
return n - 1;
}
static search(frames, time, step) {
let n = frames.length;
for (let i = step; i < n; i += step)
if (frames[i] > time)
return i - step;
return n - step;
}
};
var CurveTimeline = class extends Timeline {
curves;
// type, x, y, ...
constructor(frameCount, bezierCount, propertyIds) {
super(frameCount, propertyIds);
this.curves = Utils.newFloatArray(
frameCount + bezierCount * 18
/*BEZIER_SIZE*/
);
this.curves[frameCount - 1] = 1;
}
/** Sets the specified key frame to linear interpolation. */
setLinear(frame) {
this.curves[frame] = 0;
}
/** Sets the specified key frame to stepped interpolation. */
setStepped(frame) {
this.curves[frame] = 1;
}
/** Shrinks the storage for Bezier curves, for use when <code>bezierCount</code> (specified in the constructor) was larger
* than the actual number of Bezier curves. */
shrink(bezierCount) {
let size = this.getFrameCount() + bezierCount * 18;
if (this.curves.length > size) {
let newCurves = Utils.newFloatArray(size);
Utils.arrayCopy(this.curves, 0, newCurves, 0, size);
this.curves = newCurves;
}
}
/** Stores the segments for the specified Bezier curve. For timelines that modify multiple values, there may be more than
* one curve per frame.
* @param bezier The ordinal of this Bezier curve for this timeline, between 0 and <code>bezierCount - 1</code> (specified
* in the constructor), inclusive.
* @param frame Between 0 and <code>frameCount - 1</code>, inclusive.
* @param value The index of the value for this frame that this curve is used for.
* @param time1 The time for the first key.
* @param value1 The value for the first key.
* @param cx1 The time for the first Bezier handle.
* @param cy1 The value for the first Bezier handle.
* @param cx2 The time of the second Bezier handle.
* @param cy2 The value for the second Bezier handle.
* @param time2 The time for the second key.
* @param value2 The value for the second key. */
setBezier(bezier, frame, value, time1, value1, cx1, cy1, cx2, cy2, time2, value2) {
let curves = this.curves;
let i = this.getFrameCount() + bezier * 18;
if (value == 0)
curves[frame] = 2 + i;
let tmpx = (time1 - cx1 * 2 + cx2) * 0.03, tmpy = (value1 - cy1 * 2 + cy2) * 0.03;
let dddx = ((cx1 - cx2) * 3 - time1 + time2) * 6e-3, dddy = ((cy1 - cy2) * 3 - value1 + value2) * 6e-3;
let ddx = tmpx * 2 + dddx, ddy = tmpy * 2 + dddy;
let dx = (cx1 - time1) * 0.3 + tmpx + dddx * 0.16666667, dy = (cy1 - value1) * 0.3 + tmpy + dddy * 0.16666667;
let x = time1 + dx, y = value1 + dy;
for (let n = i + 18; i < n; i += 2) {
curves[i] = x;
curves[i + 1] = y;
dx += ddx;
dy += ddy;
ddx += dddx;
ddy += dddy;
x += dx;
y += dy;
}
}
/** Returns the Bezier interpolated value for the specified time.
* @param frameIndex The index into {@link #getFrames()} for the values of the frame before <code>time</code>.
* @param valueOffset The offset from <code>frameIndex</code> to the value this curve is used for.
* @param i The index of the Bezier segments. See {@link #getCurveType(int)}. */
getBezierValue(time, frameIndex, valueOffset, i) {
let curves = this.curves;
if (curves[i] > time) {
let x2 = this.frames[frameIndex], y2 = this.frames[frameIndex + valueOffset];
return y2 + (time - x2) / (curves[i] - x2) * (curves[i + 1] - y2);
}
let n = i + 18;
for (i += 2; i < n; i += 2) {
if (curves[i] >= time) {
let x2 = curves[i - 2], y2 = curves[i - 1];
return y2 + (time - x2) / (curves[i] - x2) * (curves[i + 1] - y2);
}
}
frameIndex += this.getFrameEntries();
let x = curves[n - 2], y = curves[n - 1];
return y + (time - x) / (this.frames[frameIndex] - x) * (this.frames[frameIndex + valueOffset] - y);
}
};
var CurveTimeline1 = class extends CurveTimeline {
constructor(frameCount, bezierCount, propertyId) {
super(frameCount, bezierCount, [propertyId]);
}
getFrameEntries() {
return 2;
}
/** Sets the time and value for the specified frame.
* @param frame Between 0 and <code>frameCount</code>, inclusive.
* @param time The frame time in seconds. */
setFrame(frame, time, value) {
frame <<= 1;
this.frames[frame] = time;
this.frames[
frame + 1
/*VALUE*/
] = value;
}
/** Returns the interpolated value for the specified time. */
getCurveValue(time) {
let frames = this.frames;
let i = frames.length - 2;
for (let ii = 2; ii <= i; ii += 2) {
if (frames[ii] > time) {
i = ii - 2;
break;
}
}
let curveType = this.curves[i >> 1];
switch (curveType) {
case 0:
let before = frames[i], value = frames[
i + 1
/*VALUE*/
];
return value + (time - before) / (frames[
i + 2
/*ENTRIES*/
] - before) * (frames[
i + 2 + 1
/*VALUE*/
] - value);
case 1:
return frames[
i + 1
/*VALUE*/
];
}
return this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
}
getRelativeValue(time, alpha, blend, current, setup) {
if (time < this.frames[0]) {
switch (blend) {
case 0 /* setup */:
return setup;
case 1 /* first */:
return current + (setup - current) * alpha;
}
return current;
}
let value = this.getCurveValue(time);
switch (blend) {
case 0 /* setup */:
return setup + value * alpha;
case 1 /* first */:
case 2 /* replace */:
value += setup - current;
}
return current + value * alpha;
}
getAbsoluteValue(time, alpha, blend, current, setup) {
if (time < this.frames[0]) {
switch (blend) {
case 0 /* setup */:
return setup;
case 1 /* first */:
return current + (setup - current) * alpha;
}
return current;
}
let value = this.getCurveValue(time);
if (blend == 0 /* setup */)
return setup + (value - setup) * alpha;
return current + (value - current) * alpha;
}
getAbsoluteValue2(time, alpha, blend, current, setup, value) {
if (time < this.frames[0]) {
switch (blend) {
case 0 /* setup */:
return setup;
case 1 /* first */:
return current + (setup - current) * alpha;
}
return current;
}
if (blend == 0 /* setup */)
return setup + (value - setup) * alpha;
return current + (value - current) * alpha;
}
getScaleValue(time, alpha, blend, direction, current, setup) {
const frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
return setup;
case 1 /* first */:
return current + (setup - current) * alpha;
}
return current;
}
let value = this.getCurveValue(time) * setup;
if (alpha == 1) {
if (blend == 3 /* add */)
return current + value - setup;
return value;
}
if (direction == 1 /* mixOut */) {
switch (blend) {
case 0 /* setup */:
return setup + (Math.abs(value) * MathUtils.signum(setup) - setup) * alpha;
case 1 /* first */:
case 2 /* replace */:
return current + (Math.abs(value) * MathUtils.signum(current) - current) * alpha;
}
} else {
let s = 0;
switch (blend) {
case 0 /* setup */:
s = Math.abs(setup) * MathUtils.signum(value);
return s + (value - s) * alpha;
case 1 /* first */:
case 2 /* replace */:
s = Math.abs(current) * MathUtils.signum(value);
return s + (value - s) * alpha;
}
}
return current + (value - setup) * alpha;
}
};
var CurveTimeline2 = class extends CurveTimeline {
/** @param bezierCount The maximum number of Bezier curves. See {@link #shrink(int)}.
* @param propertyIds Unique identifiers for the properties the timeline modifies. */
constructor(frameCount, bezierCount, propertyId1, propertyId2) {
super(frameCount, bezierCount, [propertyId1, propertyId2]);
}
getFrameEntries() {
return 3;
}
/** Sets the time and values for the specified frame.
* @param frame Between 0 and <code>frameCount</code>, inclusive.
* @param time The frame time in seconds. */
setFrame(frame, time, value1, value2) {
frame *= 3;
this.frames[frame] = time;
this.frames[
frame + 1
/*VALUE1*/
] = value1;
this.frames[
frame + 2
/*VALUE2*/
] = value2;
}
};
var RotateTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.rotate + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.rotation = this.getRelativeValue(time, alpha, blend, bone.rotation, bone.data.rotation);
}
};
var TranslateTimeline = class extends CurveTimeline2 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(
frameCount,
bezierCount,
Property.x + "|" + boneIndex,
Property.y + "|" + boneIndex
);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (!bone.active)
return;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
bone.x = bone.data.x;
bone.y = bone.data.y;
return;
case 1 /* first */:
bone.x += (bone.data.x - bone.x) * alpha;
bone.y += (bone.data.y - bone.y) * alpha;
}
return;
}
let x = 0, y = 0;
let i = Timeline.search(
frames,
time,
3
/*ENTRIES*/
);
let curveType = this.curves[
i / 3
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
let t = (time - before) / (frames[
i + 3
/*ENTRIES*/
] - before);
x += (frames[
i + 3 + 1
/*VALUE1*/
] - x) * t;
y += (frames[
i + 3 + 2
/*VALUE2*/
] - y) * t;
break;
case 1:
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
break;
default:
x = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
y = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
}
switch (blend) {
case 0 /* setup */:
bone.x = bone.data.x + x * alpha;
bone.y = bone.data.y + y * alpha;
break;
case 1 /* first */:
case 2 /* replace */:
bone.x += (bone.data.x + x - bone.x) * alpha;
bone.y += (bone.data.y + y - bone.y) * alpha;
break;
case 3 /* add */:
bone.x += x * alpha;
bone.y += y * alpha;
}
}
};
var TranslateXTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.x + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.x = this.getRelativeValue(time, alpha, blend, bone.x, bone.data.x);
}
};
var TranslateYTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.y + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.y = this.getRelativeValue(time, alpha, blend, bone.y, bone.data.y);
}
};
var ScaleTimeline = class extends CurveTimeline2 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(
frameCount,
bezierCount,
Property.scaleX + "|" + boneIndex,
Property.scaleY + "|" + boneIndex
);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (!bone.active)
return;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
bone.scaleX = bone.data.scaleX;
bone.scaleY = bone.data.scaleY;
return;
case 1 /* first */:
bone.scaleX += (bone.data.scaleX - bone.scaleX) * alpha;
bone.scaleY += (bone.data.scaleY - bone.scaleY) * alpha;
}
return;
}
let x, y;
let i = Timeline.search(
frames,
time,
3
/*ENTRIES*/
);
let curveType = this.curves[
i / 3
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
let t = (time - before) / (frames[
i + 3
/*ENTRIES*/
] - before);
x += (frames[
i + 3 + 1
/*VALUE1*/
] - x) * t;
y += (frames[
i + 3 + 2
/*VALUE2*/
] - y) * t;
break;
case 1:
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
break;
default:
x = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
y = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
}
x *= bone.data.scaleX;
y *= bone.data.scaleY;
if (alpha == 1) {
if (blend == 3 /* add */) {
bone.scaleX += x - bone.data.scaleX;
bone.scaleY += y - bone.data.scaleY;
} else {
bone.scaleX = x;
bone.scaleY = y;
}
} else {
let bx = 0, by = 0;
if (direction == 1 /* mixOut */) {
switch (blend) {
case 0 /* setup */:
bx = bone.data.scaleX;
by = bone.data.scaleY;
bone.scaleX = bx + (Math.abs(x) * MathUtils.signum(bx) - bx) * alpha;
bone.scaleY = by + (Math.abs(y) * MathUtils.signum(by) - by) * alpha;
break;
case 1 /* first */:
case 2 /* replace */:
bx = bone.scaleX;
by = bone.scaleY;
bone.scaleX = bx + (Math.abs(x) * MathUtils.signum(bx) - bx) * alpha;
bone.scaleY = by + (Math.abs(y) * MathUtils.signum(by) - by) * alpha;
break;
case 3 /* add */:
bone.scaleX += (x - bone.data.scaleX) * alpha;
bone.scaleY += (y - bone.data.scaleY) * alpha;
}
} else {
switch (blend) {
case 0 /* setup */:
bx = Math.abs(bone.data.scaleX) * MathUtils.signum(x);
by = Math.abs(bone.data.scaleY) * MathUtils.signum(y);
bone.scaleX = bx + (x - bx) * alpha;
bone.scaleY = by + (y - by) * alpha;
break;
case 1 /* first */:
case 2 /* replace */:
bx = Math.abs(bone.scaleX) * MathUtils.signum(x);
by = Math.abs(bone.scaleY) * MathUtils.signum(y);
bone.scaleX = bx + (x - bx) * alpha;
bone.scaleY = by + (y - by) * alpha;
break;
case 3 /* add */:
bone.scaleX += (x - bone.data.scaleX) * alpha;
bone.scaleY += (y - bone.data.scaleY) * alpha;
}
}
}
}
};
var ScaleXTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.scaleX + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.scaleX = this.getScaleValue(time, alpha, blend, direction, bone.scaleX, bone.data.scaleX);
}
};
var ScaleYTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.scaleY + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.scaleY = this.getScaleValue(time, alpha, blend, direction, bone.scaleY, bone.data.scaleY);
}
};
var ShearTimeline = class extends CurveTimeline2 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(
frameCount,
bezierCount,
Property.shearX + "|" + boneIndex,
Property.shearY + "|" + boneIndex
);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (!bone.active)
return;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
bone.shearX = bone.data.shearX;
bone.shearY = bone.data.shearY;
return;
case 1 /* first */:
bone.shearX += (bone.data.shearX - bone.shearX) * alpha;
bone.shearY += (bone.data.shearY - bone.shearY) * alpha;
}
return;
}
let x = 0, y = 0;
let i = Timeline.search(
frames,
time,
3
/*ENTRIES*/
);
let curveType = this.curves[
i / 3
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
let t = (time - before) / (frames[
i + 3
/*ENTRIES*/
] - before);
x += (frames[
i + 3 + 1
/*VALUE1*/
] - x) * t;
y += (frames[
i + 3 + 2
/*VALUE2*/
] - y) * t;
break;
case 1:
x = frames[
i + 1
/*VALUE1*/
];
y = frames[
i + 2
/*VALUE2*/
];
break;
default:
x = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
y = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
}
switch (blend) {
case 0 /* setup */:
bone.shearX = bone.data.shearX + x * alpha;
bone.shearY = bone.data.shearY + y * alpha;
break;
case 1 /* first */:
case 2 /* replace */:
bone.shearX += (bone.data.shearX + x - bone.shearX) * alpha;
bone.shearY += (bone.data.shearY + y - bone.shearY) * alpha;
break;
case 3 /* add */:
bone.shearX += x * alpha;
bone.shearY += y * alpha;
}
}
};
var ShearXTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.shearX + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.shearX = this.getRelativeValue(time, alpha, blend, bone.shearX, bone.data.shearX);
}
};
var ShearYTimeline = class extends CurveTimeline1 {
boneIndex = 0;
constructor(frameCount, bezierCount, boneIndex) {
super(frameCount, bezierCount, Property.shearY + "|" + boneIndex);
this.boneIndex = boneIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (bone.active)
bone.shearY = this.getRelativeValue(time, alpha, blend, bone.shearY, bone.data.shearY);
}
};
var InheritTimeline = class extends Timeline {
boneIndex = 0;
constructor(frameCount, boneIndex) {
super(frameCount, [Property.inherit + "|" + boneIndex]);
this.boneIndex = boneIndex;
}
getFrameEntries() {
return 2;
}
/** Sets the transform mode for the specified frame.
* @param frame Between 0 and <code>frameCount</code>, inclusive.
* @param time The frame time in seconds. */
setFrame(frame, time, inherit) {
frame *= 2;
this.frames[frame] = time;
this.frames[
frame + 1
/*INHERIT*/
] = inherit;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let bone = skeleton.bones[this.boneIndex];
if (!bone.active)
return;
if (direction == 1 /* mixOut */) {
if (blend == 0 /* setup */)
bone.inherit = bone.data.inherit;
return;
}
let frames = this.frames;
if (time < frames[0]) {
if (blend == 0 /* setup */ || blend == 1 /* first */)
bone.inherit = bone.data.inherit;
return;
}
bone.inherit = this.frames[
Timeline.search(
frames,
time,
2
/*ENTRIES*/
) + 1
/*INHERIT*/
];
}
};
var RGBATimeline = class extends CurveTimeline {
slotIndex = 0;
constructor(frameCount, bezierCount, slotIndex) {
super(frameCount, bezierCount, [
Property.rgb + "|" + slotIndex,
Property.alpha + "|" + slotIndex
]);
this.slotIndex = slotIndex;
}
getFrameEntries() {
return 5;
}
/** Sets the time in seconds, red, green, blue, and alpha for the specified key frame. */
setFrame(frame, time, r, g, b, a) {
frame *= 5;
this.frames[frame] = time;
this.frames[
frame + 1
/*R*/
] = r;
this.frames[
frame + 2
/*G*/
] = g;
this.frames[
frame + 3
/*B*/
] = b;
this.frames[
frame + 4
/*A*/
] = a;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let frames = this.frames;
let color = slot.color;
if (time < frames[0]) {
let setup = slot.data.color;
switch (blend) {
case 0 /* setup */:
color.setFromColor(setup);
return;
case 1 /* first */:
color.add(
(setup.r - color.r) * alpha,
(setup.g - color.g) * alpha,
(setup.b - color.b) * alpha,
(setup.a - color.a) * alpha
);
}
return;
}
let r = 0, g = 0, b = 0, a = 0;
let i = Timeline.search(
frames,
time,
5
/*ENTRIES*/
);
let curveType = this.curves[
i / 5
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
a = frames[
i + 4
/*A*/
];
let t = (time - before) / (frames[
i + 5
/*ENTRIES*/
] - before);
r += (frames[
i + 5 + 1
/*R*/
] - r) * t;
g += (frames[
i + 5 + 2
/*G*/
] - g) * t;
b += (frames[
i + 5 + 3
/*B*/
] - b) * t;
a += (frames[
i + 5 + 4
/*A*/
] - a) * t;
break;
case 1:
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
a = frames[
i + 4
/*A*/
];
break;
default:
r = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
g = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
b = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
a = this.getBezierValue(
time,
i,
4,
curveType + 18 * 3 - 2
/*BEZIER*/
);
}
if (alpha == 1)
color.set(r, g, b, a);
else {
if (blend == 0 /* setup */)
color.setFromColor(slot.data.color);
color.add((r - color.r) * alpha, (g - color.g) * alpha, (b - color.b) * alpha, (a - color.a) * alpha);
}
}
};
var RGBTimeline = class extends CurveTimeline {
slotIndex = 0;
constructor(frameCount, bezierCount, slotIndex) {
super(frameCount, bezierCount, [
Property.rgb + "|" + slotIndex
]);
this.slotIndex = slotIndex;
}
getFrameEntries() {
return 4;
}
/** Sets the time in seconds, red, green, blue, and alpha for the specified key frame. */
setFrame(frame, time, r, g, b) {
frame <<= 2;
this.frames[frame] = time;
this.frames[
frame + 1
/*R*/
] = r;
this.frames[
frame + 2
/*G*/
] = g;
this.frames[
frame + 3
/*B*/
] = b;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let frames = this.frames;
let color = slot.color;
if (time < frames[0]) {
let setup = slot.data.color;
switch (blend) {
case 0 /* setup */:
color.r = setup.r;
color.g = setup.g;
color.b = setup.b;
return;
case 1 /* first */:
color.r += (setup.r - color.r) * alpha;
color.g += (setup.g - color.g) * alpha;
color.b += (setup.b - color.b) * alpha;
}
return;
}
let r = 0, g = 0, b = 0;
let i = Timeline.search(
frames,
time,
4
/*ENTRIES*/
);
let curveType = this.curves[i >> 2];
switch (curveType) {
case 0:
let before = frames[i];
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
let t = (time - before) / (frames[
i + 4
/*ENTRIES*/
] - before);
r += (frames[
i + 4 + 1
/*R*/
] - r) * t;
g += (frames[
i + 4 + 2
/*G*/
] - g) * t;
b += (frames[
i + 4 + 3
/*B*/
] - b) * t;
break;
case 1:
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
break;
default:
r = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
g = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
b = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
}
if (alpha == 1) {
color.r = r;
color.g = g;
color.b = b;
} else {
if (blend == 0 /* setup */) {
let setup = slot.data.color;
color.r = setup.r;
color.g = setup.g;
color.b = setup.b;
}
color.r += (r - color.r) * alpha;
color.g += (g - color.g) * alpha;
color.b += (b - color.b) * alpha;
}
}
};
var AlphaTimeline = class extends CurveTimeline1 {
slotIndex = 0;
constructor(frameCount, bezierCount, slotIndex) {
super(frameCount, bezierCount, Property.alpha + "|" + slotIndex);
this.slotIndex = slotIndex;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let color = slot.color;
if (time < this.frames[0]) {
let setup = slot.data.color;
switch (blend) {
case 0 /* setup */:
color.a = setup.a;
return;
case 1 /* first */:
color.a += (setup.a - color.a) * alpha;
}
return;
}
let a = this.getCurveValue(time);
if (alpha == 1)
color.a = a;
else {
if (blend == 0 /* setup */)
color.a = slot.data.color.a;
color.a += (a - color.a) * alpha;
}
}
};
var RGBA2Timeline = class extends CurveTimeline {
slotIndex = 0;
constructor(frameCount, bezierCount, slotIndex) {
super(frameCount, bezierCount, [
Property.rgb + "|" + slotIndex,
Property.alpha + "|" + slotIndex,
Property.rgb2 + "|" + slotIndex
]);
this.slotIndex = slotIndex;
}
getFrameEntries() {
return 8;
}
/** Sets the time in seconds, light, and dark colors for the specified key frame. */
setFrame(frame, time, r, g, b, a, r2, g2, b2) {
frame <<= 3;
this.frames[frame] = time;
this.frames[
frame + 1
/*R*/
] = r;
this.frames[
frame + 2
/*G*/
] = g;
this.frames[
frame + 3
/*B*/
] = b;
this.frames[
frame + 4
/*A*/
] = a;
this.frames[
frame + 5
/*R2*/
] = r2;
this.frames[
frame + 6
/*G2*/
] = g2;
this.frames[
frame + 7
/*B2*/
] = b2;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let frames = this.frames;
let light = slot.color, dark = slot.darkColor;
if (time < frames[0]) {
let setupLight = slot.data.color, setupDark = slot.data.darkColor;
switch (blend) {
case 0 /* setup */:
light.setFromColor(setupLight);
dark.r = setupDark.r;
dark.g = setupDark.g;
dark.b = setupDark.b;
return;
case 1 /* first */:
light.add(
(setupLight.r - light.r) * alpha,
(setupLight.g - light.g) * alpha,
(setupLight.b - light.b) * alpha,
(setupLight.a - light.a) * alpha
);
dark.r += (setupDark.r - dark.r) * alpha;
dark.g += (setupDark.g - dark.g) * alpha;
dark.b += (setupDark.b - dark.b) * alpha;
}
return;
}
let r = 0, g = 0, b = 0, a = 0, r2 = 0, g2 = 0, b2 = 0;
let i = Timeline.search(
frames,
time,
8
/*ENTRIES*/
);
let curveType = this.curves[i >> 3];
switch (curveType) {
case 0:
let before = frames[i];
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
a = frames[
i + 4
/*A*/
];
r2 = frames[
i + 5
/*R2*/
];
g2 = frames[
i + 6
/*G2*/
];
b2 = frames[
i + 7
/*B2*/
];
let t = (time - before) / (frames[
i + 8
/*ENTRIES*/
] - before);
r += (frames[
i + 8 + 1
/*R*/
] - r) * t;
g += (frames[
i + 8 + 2
/*G*/
] - g) * t;
b += (frames[
i + 8 + 3
/*B*/
] - b) * t;
a += (frames[
i + 8 + 4
/*A*/
] - a) * t;
r2 += (frames[
i + 8 + 5
/*R2*/
] - r2) * t;
g2 += (frames[
i + 8 + 6
/*G2*/
] - g2) * t;
b2 += (frames[
i + 8 + 7
/*B2*/
] - b2) * t;
break;
case 1:
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
a = frames[
i + 4
/*A*/
];
r2 = frames[
i + 5
/*R2*/
];
g2 = frames[
i + 6
/*G2*/
];
b2 = frames[
i + 7
/*B2*/
];
break;
default:
r = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
g = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
b = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
a = this.getBezierValue(
time,
i,
4,
curveType + 18 * 3 - 2
/*BEZIER*/
);
r2 = this.getBezierValue(
time,
i,
5,
curveType + 18 * 4 - 2
/*BEZIER*/
);
g2 = this.getBezierValue(
time,
i,
6,
curveType + 18 * 5 - 2
/*BEZIER*/
);
b2 = this.getBezierValue(
time,
i,
7,
curveType + 18 * 6 - 2
/*BEZIER*/
);
}
if (alpha == 1) {
light.set(r, g, b, a);
dark.r = r2;
dark.g = g2;
dark.b = b2;
} else {
if (blend == 0 /* setup */) {
light.setFromColor(slot.data.color);
let setupDark = slot.data.darkColor;
dark.r = setupDark.r;
dark.g = setupDark.g;
dark.b = setupDark.b;
}
light.add((r - light.r) * alpha, (g - light.g) * alpha, (b - light.b) * alpha, (a - light.a) * alpha);
dark.r += (r2 - dark.r) * alpha;
dark.g += (g2 - dark.g) * alpha;
dark.b += (b2 - dark.b) * alpha;
}
}
};
var RGB2Timeline = class extends CurveTimeline {
slotIndex = 0;
constructor(frameCount, bezierCount, slotIndex) {
super(frameCount, bezierCount, [
Property.rgb + "|" + slotIndex,
Property.rgb2 + "|" + slotIndex
]);
this.slotIndex = slotIndex;
}
getFrameEntries() {
return 7;
}
/** Sets the time in seconds, light, and dark colors for the specified key frame. */
setFrame(frame, time, r, g, b, r2, g2, b2) {
frame *= 7;
this.frames[frame] = time;
this.frames[
frame + 1
/*R*/
] = r;
this.frames[
frame + 2
/*G*/
] = g;
this.frames[
frame + 3
/*B*/
] = b;
this.frames[
frame + 4
/*R2*/
] = r2;
this.frames[
frame + 5
/*G2*/
] = g2;
this.frames[
frame + 6
/*B2*/
] = b2;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let frames = this.frames;
let light = slot.color, dark = slot.darkColor;
if (time < frames[0]) {
let setupLight = slot.data.color, setupDark = slot.data.darkColor;
switch (blend) {
case 0 /* setup */:
light.r = setupLight.r;
light.g = setupLight.g;
light.b = setupLight.b;
dark.r = setupDark.r;
dark.g = setupDark.g;
dark.b = setupDark.b;
return;
case 1 /* first */:
light.r += (setupLight.r - light.r) * alpha;
light.g += (setupLight.g - light.g) * alpha;
light.b += (setupLight.b - light.b) * alpha;
dark.r += (setupDark.r - dark.r) * alpha;
dark.g += (setupDark.g - dark.g) * alpha;
dark.b += (setupDark.b - dark.b) * alpha;
}
return;
}
let r = 0, g = 0, b = 0, a = 0, r2 = 0, g2 = 0, b2 = 0;
let i = Timeline.search(
frames,
time,
7
/*ENTRIES*/
);
let curveType = this.curves[
i / 7
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
r2 = frames[
i + 4
/*R2*/
];
g2 = frames[
i + 5
/*G2*/
];
b2 = frames[
i + 6
/*B2*/
];
let t = (time - before) / (frames[
i + 7
/*ENTRIES*/
] - before);
r += (frames[
i + 7 + 1
/*R*/
] - r) * t;
g += (frames[
i + 7 + 2
/*G*/
] - g) * t;
b += (frames[
i + 7 + 3
/*B*/
] - b) * t;
r2 += (frames[
i + 7 + 4
/*R2*/
] - r2) * t;
g2 += (frames[
i + 7 + 5
/*G2*/
] - g2) * t;
b2 += (frames[
i + 7 + 6
/*B2*/
] - b2) * t;
break;
case 1:
r = frames[
i + 1
/*R*/
];
g = frames[
i + 2
/*G*/
];
b = frames[
i + 3
/*B*/
];
r2 = frames[
i + 4
/*R2*/
];
g2 = frames[
i + 5
/*G2*/
];
b2 = frames[
i + 6
/*B2*/
];
break;
default:
r = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
g = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
b = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
r2 = this.getBezierValue(
time,
i,
4,
curveType + 18 * 3 - 2
/*BEZIER*/
);
g2 = this.getBezierValue(
time,
i,
5,
curveType + 18 * 4 - 2
/*BEZIER*/
);
b2 = this.getBezierValue(
time,
i,
6,
curveType + 18 * 5 - 2
/*BEZIER*/
);
}
if (alpha == 1) {
light.r = r;
light.g = g;
light.b = b;
dark.r = r2;
dark.g = g2;
dark.b = b2;
} else {
if (blend == 0 /* setup */) {
let setupLight = slot.data.color, setupDark = slot.data.darkColor;
light.r = setupLight.r;
light.g = setupLight.g;
light.b = setupLight.b;
dark.r = setupDark.r;
dark.g = setupDark.g;
dark.b = setupDark.b;
}
light.r += (r - light.r) * alpha;
light.g += (g - light.g) * alpha;
light.b += (b - light.b) * alpha;
dark.r += (r2 - dark.r) * alpha;
dark.g += (g2 - dark.g) * alpha;
dark.b += (b2 - dark.b) * alpha;
}
}
};
var AttachmentTimeline = class extends Timeline {
slotIndex = 0;
/** The attachment name for each key frame. May contain null values to clear the attachment. */
attachmentNames;
constructor(frameCount, slotIndex) {
super(frameCount, [
Property.attachment + "|" + slotIndex
]);
this.slotIndex = slotIndex;
this.attachmentNames = new Array(frameCount);
}
getFrameCount() {
return this.frames.length;
}
/** Sets the time in seconds and the attachment name for the specified key frame. */
setFrame(frame, time, attachmentName) {
this.frames[frame] = time;
this.attachmentNames[frame] = attachmentName;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
if (direction == 1 /* mixOut */) {
if (blend == 0 /* setup */)
this.setAttachment(skeleton, slot, slot.data.attachmentName);
return;
}
if (time < this.frames[0]) {
if (blend == 0 /* setup */ || blend == 1 /* first */)
this.setAttachment(skeleton, slot, slot.data.attachmentName);
return;
}
this.setAttachment(skeleton, slot, this.attachmentNames[Timeline.search1(this.frames, time)]);
}
setAttachment(skeleton, slot, attachmentName) {
slot.setAttachment(!attachmentName ? null : skeleton.getAttachment(this.slotIndex, attachmentName));
}
};
var DeformTimeline = class extends CurveTimeline {
slotIndex = 0;
/** The attachment that will be deformed. */
attachment;
/** The vertices for each key frame. */
vertices;
constructor(frameCount, bezierCount, slotIndex, attachment) {
super(frameCount, bezierCount, [
Property.deform + "|" + slotIndex + "|" + attachment.id
]);
this.slotIndex = slotIndex;
this.attachment = attachment;
this.vertices = new Array(frameCount);
}
getFrameCount() {
return this.frames.length;
}
/** Sets the time in seconds and the vertices for the specified key frame.
* @param vertices Vertex positions for an unweighted VertexAttachment, or deform offsets if it has weights. */
setFrame(frame, time, vertices) {
this.frames[frame] = time;
this.vertices[frame] = vertices;
}
/** @param value1 Ignored (0 is used for a deform timeline).
* @param value2 Ignored (1 is used for a deform timeline). */
setBezier(bezier, frame, value, time1, value1, cx1, cy1, cx2, cy2, time2, value2) {
let curves = this.curves;
let i = this.getFrameCount() + bezier * 18;
if (value == 0)
curves[frame] = 2 + i;
let tmpx = (time1 - cx1 * 2 + cx2) * 0.03, tmpy = cy2 * 0.03 - cy1 * 0.06;
let dddx = ((cx1 - cx2) * 3 - time1 + time2) * 6e-3, dddy = (cy1 - cy2 + 0.33333333) * 0.018;
let ddx = tmpx * 2 + dddx, ddy = tmpy * 2 + dddy;
let dx = (cx1 - time1) * 0.3 + tmpx + dddx * 0.16666667, dy = cy1 * 0.3 + tmpy + dddy * 0.16666667;
let x = time1 + dx, y = dy;
for (let n = i + 18; i < n; i += 2) {
curves[i] = x;
curves[i + 1] = y;
dx += ddx;
dy += ddy;
ddx += dddx;
ddy += dddy;
x += dx;
y += dy;
}
}
getCurvePercent(time, frame) {
let curves = this.curves;
let i = curves[frame];
switch (i) {
case 0:
let x2 = this.frames[frame];
return (time - x2) / (this.frames[frame + this.getFrameEntries()] - x2);
case 1:
return 0;
}
i -= 2;
if (curves[i] > time) {
let x2 = this.frames[frame];
return curves[i + 1] * (time - x2) / (curves[i] - x2);
}
let n = i + 18;
for (i += 2; i < n; i += 2) {
if (curves[i] >= time) {
let x2 = curves[i - 2], y2 = curves[i - 1];
return y2 + (time - x2) / (curves[i] - x2) * (curves[i + 1] - y2);
}
}
let x = curves[n - 2], y = curves[n - 1];
return y + (1 - y) * (time - x) / (this.frames[frame + this.getFrameEntries()] - x);
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let slotAttachment = slot.getAttachment();
if (!slotAttachment)
return;
if (!(slotAttachment instanceof VertexAttachment) || slotAttachment.timelineAttachment != this.attachment)
return;
let deform = slot.deform;
if (deform.length == 0)
blend = 0 /* setup */;
let vertices = this.vertices;
let vertexCount = vertices[0].length;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
deform.length = 0;
return;
case 1 /* first */:
if (alpha == 1) {
deform.length = 0;
return;
}
deform.length = vertexCount;
let vertexAttachment = slotAttachment;
if (!vertexAttachment.bones) {
let setupVertices = vertexAttachment.vertices;
for (var i = 0; i < vertexCount; i++)
deform[i] += (setupVertices[i] - deform[i]) * alpha;
} else {
alpha = 1 - alpha;
for (var i = 0; i < vertexCount; i++)
deform[i] *= alpha;
}
}
return;
}
deform.length = vertexCount;
if (time >= frames[frames.length - 1]) {
let lastVertices = vertices[frames.length - 1];
if (alpha == 1) {
if (blend == 3 /* add */) {
let vertexAttachment = slotAttachment;
if (!vertexAttachment.bones) {
let setupVertices = vertexAttachment.vertices;
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] += lastVertices[i2] - setupVertices[i2];
} else {
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] += lastVertices[i2];
}
} else
Utils.arrayCopy(lastVertices, 0, deform, 0, vertexCount);
} else {
switch (blend) {
case 0 /* setup */: {
let vertexAttachment2 = slotAttachment;
if (!vertexAttachment2.bones) {
let setupVertices = vertexAttachment2.vertices;
for (let i2 = 0; i2 < vertexCount; i2++) {
let setup = setupVertices[i2];
deform[i2] = setup + (lastVertices[i2] - setup) * alpha;
}
} else {
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] = lastVertices[i2] * alpha;
}
break;
}
case 1 /* first */:
case 2 /* replace */:
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] += (lastVertices[i2] - deform[i2]) * alpha;
break;
case 3 /* add */:
let vertexAttachment = slotAttachment;
if (!vertexAttachment.bones) {
let setupVertices = vertexAttachment.vertices;
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] += (lastVertices[i2] - setupVertices[i2]) * alpha;
} else {
for (let i2 = 0; i2 < vertexCount; i2++)
deform[i2] += lastVertices[i2] * alpha;
}
}
}
return;
}
let frame = Timeline.search1(frames, time);
let percent = this.getCurvePercent(time, frame);
let prevVertices = vertices[frame];
let nextVertices = vertices[frame + 1];
if (alpha == 1) {
if (blend == 3 /* add */) {
let vertexAttachment = slotAttachment;
if (!vertexAttachment.bones) {
let setupVertices = vertexAttachment.vertices;
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] += prev + (nextVertices[i2] - prev) * percent - setupVertices[i2];
}
} else {
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] += prev + (nextVertices[i2] - prev) * percent;
}
}
} else {
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] = prev + (nextVertices[i2] - prev) * percent;
}
}
} else {
switch (blend) {
case 0 /* setup */: {
let vertexAttachment2 = slotAttachment;
if (!vertexAttachment2.bones) {
let setupVertices = vertexAttachment2.vertices;
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2], setup = setupVertices[i2];
deform[i2] = setup + (prev + (nextVertices[i2] - prev) * percent - setup) * alpha;
}
} else {
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] = (prev + (nextVertices[i2] - prev) * percent) * alpha;
}
}
break;
}
case 1 /* first */:
case 2 /* replace */:
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] += (prev + (nextVertices[i2] - prev) * percent - deform[i2]) * alpha;
}
break;
case 3 /* add */:
let vertexAttachment = slotAttachment;
if (!vertexAttachment.bones) {
let setupVertices = vertexAttachment.vertices;
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] += (prev + (nextVertices[i2] - prev) * percent - setupVertices[i2]) * alpha;
}
} else {
for (let i2 = 0; i2 < vertexCount; i2++) {
let prev = prevVertices[i2];
deform[i2] += (prev + (nextVertices[i2] - prev) * percent) * alpha;
}
}
}
}
}
};
var _EventTimeline = class extends Timeline {
/** The event for each key frame. */
events;
constructor(frameCount) {
super(frameCount, _EventTimeline.propertyIds);
this.events = new Array(frameCount);
}
getFrameCount() {
return this.frames.length;
}
/** Sets the time in seconds and the event for the specified key frame. */
setFrame(frame, event) {
this.frames[frame] = event.time;
this.events[frame] = event;
}
/** Fires events for frames > `lastTime` and <= `time`. */
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
if (!firedEvents)
return;
let frames = this.frames;
let frameCount = this.frames.length;
if (lastTime > time) {
this.apply(skeleton, lastTime, Number.MAX_VALUE, firedEvents, alpha, blend, direction);
lastTime = -1;
} else if (lastTime >= frames[frameCount - 1])
return;
if (time < frames[0])
return;
let i = 0;
if (lastTime < frames[0])
i = 0;
else {
i = Timeline.search1(frames, lastTime) + 1;
let frameTime = frames[i];
while (i > 0) {
if (frames[i - 1] != frameTime)
break;
i--;
}
}
for (; i < frameCount && time >= frames[i]; i++)
firedEvents.push(this.events[i]);
}
};
var EventTimeline = _EventTimeline;
__publicField(EventTimeline, "propertyIds", ["" + Property.event]);
var _DrawOrderTimeline = class extends Timeline {
/** The draw order for each key frame. See {@link #setFrame(int, float, int[])}. */
drawOrders;
constructor(frameCount) {
super(frameCount, _DrawOrderTimeline.propertyIds);
this.drawOrders = new Array(frameCount);
}
getFrameCount() {
return this.frames.length;
}
/** Sets the time in seconds and the draw order for the specified key frame.
* @param drawOrder For each slot in {@link Skeleton#slots}, the index of the new draw order. May be null to use setup pose
* draw order. */
setFrame(frame, time, drawOrder) {
this.frames[frame] = time;
this.drawOrders[frame] = drawOrder;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
if (direction == 1 /* mixOut */) {
if (blend == 0 /* setup */)
Utils.arrayCopy(skeleton.slots, 0, skeleton.drawOrder, 0, skeleton.slots.length);
return;
}
if (time < this.frames[0]) {
if (blend == 0 /* setup */ || blend == 1 /* first */)
Utils.arrayCopy(skeleton.slots, 0, skeleton.drawOrder, 0, skeleton.slots.length);
return;
}
let idx = Timeline.search1(this.frames, time);
let drawOrderToSetupIndex = this.drawOrders[idx];
if (!drawOrderToSetupIndex)
Utils.arrayCopy(skeleton.slots, 0, skeleton.drawOrder, 0, skeleton.slots.length);
else {
let drawOrder = skeleton.drawOrder;
let slots = skeleton.slots;
for (let i = 0, n = drawOrderToSetupIndex.length; i < n; i++)
drawOrder[i] = slots[drawOrderToSetupIndex[i]];
}
}
};
var DrawOrderTimeline = _DrawOrderTimeline;
__publicField(DrawOrderTimeline, "propertyIds", ["" + Property.drawOrder]);
var IkConstraintTimeline = class extends CurveTimeline {
/** The index of the IK constraint in {@link Skeleton#getIkConstraints()} that will be changed when this timeline is applied */
constraintIndex = 0;
constructor(frameCount, bezierCount, ikConstraintIndex) {
super(frameCount, bezierCount, [
Property.ikConstraint + "|" + ikConstraintIndex
]);
this.constraintIndex = ikConstraintIndex;
}
getFrameEntries() {
return 6;
}
/** Sets the time in seconds, mix, softness, bend direction, compress, and stretch for the specified key frame. */
setFrame(frame, time, mix, softness, bendDirection, compress, stretch) {
frame *= 6;
this.frames[frame] = time;
this.frames[
frame + 1
/*MIX*/
] = mix;
this.frames[
frame + 2
/*SOFTNESS*/
] = softness;
this.frames[
frame + 3
/*BEND_DIRECTION*/
] = bendDirection;
this.frames[
frame + 4
/*COMPRESS*/
] = compress ? 1 : 0;
this.frames[
frame + 5
/*STRETCH*/
] = stretch ? 1 : 0;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint = skeleton.ikConstraints[this.constraintIndex];
if (!constraint.active)
return;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
constraint.mix = constraint.data.mix;
constraint.softness = constraint.data.softness;
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
return;
case 1 /* first */:
constraint.mix += (constraint.data.mix - constraint.mix) * alpha;
constraint.softness += (constraint.data.softness - constraint.softness) * alpha;
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
}
return;
}
let mix = 0, softness = 0;
let i = Timeline.search(
frames,
time,
6
/*ENTRIES*/
);
let curveType = this.curves[
i / 6
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
mix = frames[
i + 1
/*MIX*/
];
softness = frames[
i + 2
/*SOFTNESS*/
];
let t = (time - before) / (frames[
i + 6
/*ENTRIES*/
] - before);
mix += (frames[
i + 6 + 1
/*MIX*/
] - mix) * t;
softness += (frames[
i + 6 + 2
/*SOFTNESS*/
] - softness) * t;
break;
case 1:
mix = frames[
i + 1
/*MIX*/
];
softness = frames[
i + 2
/*SOFTNESS*/
];
break;
default:
mix = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
softness = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
}
if (blend == 0 /* setup */) {
constraint.mix = constraint.data.mix + (mix - constraint.data.mix) * alpha;
constraint.softness = constraint.data.softness + (softness - constraint.data.softness) * alpha;
if (direction == 1 /* mixOut */) {
constraint.bendDirection = constraint.data.bendDirection;
constraint.compress = constraint.data.compress;
constraint.stretch = constraint.data.stretch;
} else {
constraint.bendDirection = frames[
i + 3
/*BEND_DIRECTION*/
];
constraint.compress = frames[
i + 4
/*COMPRESS*/
] != 0;
constraint.stretch = frames[
i + 5
/*STRETCH*/
] != 0;
}
} else {
constraint.mix += (mix - constraint.mix) * alpha;
constraint.softness += (softness - constraint.softness) * alpha;
if (direction == 0 /* mixIn */) {
constraint.bendDirection = frames[
i + 3
/*BEND_DIRECTION*/
];
constraint.compress = frames[
i + 4
/*COMPRESS*/
] != 0;
constraint.stretch = frames[
i + 5
/*STRETCH*/
] != 0;
}
}
}
};
var TransformConstraintTimeline = class extends CurveTimeline {
/** The index of the transform constraint slot in {@link Skeleton#transformConstraints} that will be changed. */
constraintIndex = 0;
constructor(frameCount, bezierCount, transformConstraintIndex) {
super(frameCount, bezierCount, [
Property.transformConstraint + "|" + transformConstraintIndex
]);
this.constraintIndex = transformConstraintIndex;
}
getFrameEntries() {
return 7;
}
/** The time in seconds, rotate mix, translate mix, scale mix, and shear mix for the specified key frame. */
setFrame(frame, time, mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY) {
let frames = this.frames;
frame *= 7;
frames[frame] = time;
frames[
frame + 1
/*ROTATE*/
] = mixRotate;
frames[
frame + 2
/*X*/
] = mixX;
frames[
frame + 3
/*Y*/
] = mixY;
frames[
frame + 4
/*SCALEX*/
] = mixScaleX;
frames[
frame + 5
/*SCALEY*/
] = mixScaleY;
frames[
frame + 6
/*SHEARY*/
] = mixShearY;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint = skeleton.transformConstraints[this.constraintIndex];
if (!constraint.active)
return;
let frames = this.frames;
if (time < frames[0]) {
let data = constraint.data;
switch (blend) {
case 0 /* setup */:
constraint.mixRotate = data.mixRotate;
constraint.mixX = data.mixX;
constraint.mixY = data.mixY;
constraint.mixScaleX = data.mixScaleX;
constraint.mixScaleY = data.mixScaleY;
constraint.mixShearY = data.mixShearY;
return;
case 1 /* first */:
constraint.mixRotate += (data.mixRotate - constraint.mixRotate) * alpha;
constraint.mixX += (data.mixX - constraint.mixX) * alpha;
constraint.mixY += (data.mixY - constraint.mixY) * alpha;
constraint.mixScaleX += (data.mixScaleX - constraint.mixScaleX) * alpha;
constraint.mixScaleY += (data.mixScaleY - constraint.mixScaleY) * alpha;
constraint.mixShearY += (data.mixShearY - constraint.mixShearY) * alpha;
}
return;
}
let rotate, x, y, scaleX, scaleY, shearY;
let i = Timeline.search(
frames,
time,
7
/*ENTRIES*/
);
let curveType = this.curves[
i / 7
/*ENTRIES*/
];
switch (curveType) {
case 0:
let before = frames[i];
rotate = frames[
i + 1
/*ROTATE*/
];
x = frames[
i + 2
/*X*/
];
y = frames[
i + 3
/*Y*/
];
scaleX = frames[
i + 4
/*SCALEX*/
];
scaleY = frames[
i + 5
/*SCALEY*/
];
shearY = frames[
i + 6
/*SHEARY*/
];
let t = (time - before) / (frames[
i + 7
/*ENTRIES*/
] - before);
rotate += (frames[
i + 7 + 1
/*ROTATE*/
] - rotate) * t;
x += (frames[
i + 7 + 2
/*X*/
] - x) * t;
y += (frames[
i + 7 + 3
/*Y*/
] - y) * t;
scaleX += (frames[
i + 7 + 4
/*SCALEX*/
] - scaleX) * t;
scaleY += (frames[
i + 7 + 5
/*SCALEY*/
] - scaleY) * t;
shearY += (frames[
i + 7 + 6
/*SHEARY*/
] - shearY) * t;
break;
case 1:
rotate = frames[
i + 1
/*ROTATE*/
];
x = frames[
i + 2
/*X*/
];
y = frames[
i + 3
/*Y*/
];
scaleX = frames[
i + 4
/*SCALEX*/
];
scaleY = frames[
i + 5
/*SCALEY*/
];
shearY = frames[
i + 6
/*SHEARY*/
];
break;
default:
rotate = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
x = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
y = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
scaleX = this.getBezierValue(
time,
i,
4,
curveType + 18 * 3 - 2
/*BEZIER*/
);
scaleY = this.getBezierValue(
time,
i,
5,
curveType + 18 * 4 - 2
/*BEZIER*/
);
shearY = this.getBezierValue(
time,
i,
6,
curveType + 18 * 5 - 2
/*BEZIER*/
);
}
if (blend == 0 /* setup */) {
let data = constraint.data;
constraint.mixRotate = data.mixRotate + (rotate - data.mixRotate) * alpha;
constraint.mixX = data.mixX + (x - data.mixX) * alpha;
constraint.mixY = data.mixY + (y - data.mixY) * alpha;
constraint.mixScaleX = data.mixScaleX + (scaleX - data.mixScaleX) * alpha;
constraint.mixScaleY = data.mixScaleY + (scaleY - data.mixScaleY) * alpha;
constraint.mixShearY = data.mixShearY + (shearY - data.mixShearY) * alpha;
} else {
constraint.mixRotate += (rotate - constraint.mixRotate) * alpha;
constraint.mixX += (x - constraint.mixX) * alpha;
constraint.mixY += (y - constraint.mixY) * alpha;
constraint.mixScaleX += (scaleX - constraint.mixScaleX) * alpha;
constraint.mixScaleY += (scaleY - constraint.mixScaleY) * alpha;
constraint.mixShearY += (shearY - constraint.mixShearY) * alpha;
}
}
};
var PathConstraintPositionTimeline = class extends CurveTimeline1 {
/** The index of the path constraint in {@link Skeleton#getPathConstraints()} that will be changed when this timeline is
* applied. */
constraintIndex = 0;
constructor(frameCount, bezierCount, pathConstraintIndex) {
super(frameCount, bezierCount, Property.pathConstraintPosition + "|" + pathConstraintIndex);
this.constraintIndex = pathConstraintIndex;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint = skeleton.pathConstraints[this.constraintIndex];
if (constraint.active)
constraint.position = this.getAbsoluteValue(time, alpha, blend, constraint.position, constraint.data.position);
}
};
var PathConstraintSpacingTimeline = class extends CurveTimeline1 {
/** The index of the path constraint in {@link Skeleton#getPathConstraints()} that will be changed when this timeline is
* applied. */
constraintIndex = 0;
constructor(frameCount, bezierCount, pathConstraintIndex) {
super(frameCount, bezierCount, Property.pathConstraintSpacing + "|" + pathConstraintIndex);
this.constraintIndex = pathConstraintIndex;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint = skeleton.pathConstraints[this.constraintIndex];
if (constraint.active)
constraint.spacing = this.getAbsoluteValue(time, alpha, blend, constraint.spacing, constraint.data.spacing);
}
};
var PathConstraintMixTimeline = class extends CurveTimeline {
/** The index of the path constraint in {@link Skeleton#getPathConstraints()} that will be changed when this timeline is
* applied. */
constraintIndex = 0;
constructor(frameCount, bezierCount, pathConstraintIndex) {
super(frameCount, bezierCount, [
Property.pathConstraintMix + "|" + pathConstraintIndex
]);
this.constraintIndex = pathConstraintIndex;
}
getFrameEntries() {
return 4;
}
setFrame(frame, time, mixRotate, mixX, mixY) {
let frames = this.frames;
frame <<= 2;
frames[frame] = time;
frames[
frame + 1
/*ROTATE*/
] = mixRotate;
frames[
frame + 2
/*X*/
] = mixX;
frames[
frame + 3
/*Y*/
] = mixY;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint = skeleton.pathConstraints[this.constraintIndex];
if (!constraint.active)
return;
let frames = this.frames;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
constraint.mixRotate = constraint.data.mixRotate;
constraint.mixX = constraint.data.mixX;
constraint.mixY = constraint.data.mixY;
return;
case 1 /* first */:
constraint.mixRotate += (constraint.data.mixRotate - constraint.mixRotate) * alpha;
constraint.mixX += (constraint.data.mixX - constraint.mixX) * alpha;
constraint.mixY += (constraint.data.mixY - constraint.mixY) * alpha;
}
return;
}
let rotate, x, y;
let i = Timeline.search(
frames,
time,
4
/*ENTRIES*/
);
let curveType = this.curves[i >> 2];
switch (curveType) {
case 0:
let before = frames[i];
rotate = frames[
i + 1
/*ROTATE*/
];
x = frames[
i + 2
/*X*/
];
y = frames[
i + 3
/*Y*/
];
let t = (time - before) / (frames[
i + 4
/*ENTRIES*/
] - before);
rotate += (frames[
i + 4 + 1
/*ROTATE*/
] - rotate) * t;
x += (frames[
i + 4 + 2
/*X*/
] - x) * t;
y += (frames[
i + 4 + 3
/*Y*/
] - y) * t;
break;
case 1:
rotate = frames[
i + 1
/*ROTATE*/
];
x = frames[
i + 2
/*X*/
];
y = frames[
i + 3
/*Y*/
];
break;
default:
rotate = this.getBezierValue(
time,
i,
1,
curveType - 2
/*BEZIER*/
);
x = this.getBezierValue(
time,
i,
2,
curveType + 18 - 2
/*BEZIER*/
);
y = this.getBezierValue(
time,
i,
3,
curveType + 18 * 2 - 2
/*BEZIER*/
);
}
if (blend == 0 /* setup */) {
let data = constraint.data;
constraint.mixRotate = data.mixRotate + (rotate - data.mixRotate) * alpha;
constraint.mixX = data.mixX + (x - data.mixX) * alpha;
constraint.mixY = data.mixY + (y - data.mixY) * alpha;
} else {
constraint.mixRotate += (rotate - constraint.mixRotate) * alpha;
constraint.mixX += (x - constraint.mixX) * alpha;
constraint.mixY += (y - constraint.mixY) * alpha;
}
}
};
var PhysicsConstraintTimeline = class extends CurveTimeline1 {
/** The index of the physics constraint in {@link Skeleton#getPhysicsConstraints()} that will be changed when this timeline
* is applied, or -1 if all physics constraints in the skeleton will be changed. */
constraintIndex = 0;
/** @param physicsConstraintIndex -1 for all physics constraints in the skeleton. */
constructor(frameCount, bezierCount, physicsConstraintIndex, property) {
super(frameCount, bezierCount, property + "|" + physicsConstraintIndex);
this.constraintIndex = physicsConstraintIndex;
}
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint;
if (this.constraintIndex == -1) {
const value = time >= this.frames[0] ? this.getCurveValue(time) : 0;
for (const constraint2 of skeleton.physicsConstraints) {
if (constraint2.active && this.global(constraint2.data))
this.set(constraint2, this.getAbsoluteValue2(time, alpha, blend, this.get(constraint2), this.setup(constraint2), value));
}
} else {
constraint = skeleton.physicsConstraints[this.constraintIndex];
if (constraint.active)
this.set(constraint, this.getAbsoluteValue(time, alpha, blend, this.get(constraint), this.setup(constraint)));
}
}
};
var PhysicsConstraintInertiaTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintInertia);
}
setup(constraint) {
return constraint.data.inertia;
}
get(constraint) {
return constraint.inertia;
}
set(constraint, value) {
constraint.inertia = value;
}
global(constraint) {
return constraint.inertiaGlobal;
}
};
var PhysicsConstraintStrengthTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintStrength);
}
setup(constraint) {
return constraint.data.strength;
}
get(constraint) {
return constraint.strength;
}
set(constraint, value) {
constraint.strength = value;
}
global(constraint) {
return constraint.strengthGlobal;
}
};
var PhysicsConstraintDampingTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintDamping);
}
setup(constraint) {
return constraint.data.damping;
}
get(constraint) {
return constraint.damping;
}
set(constraint, value) {
constraint.damping = value;
}
global(constraint) {
return constraint.dampingGlobal;
}
};
var PhysicsConstraintMassTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintMass);
}
setup(constraint) {
return 1 / constraint.data.massInverse;
}
get(constraint) {
return 1 / constraint.massInverse;
}
set(constraint, value) {
constraint.massInverse = 1 / value;
}
global(constraint) {
return constraint.massGlobal;
}
};
var PhysicsConstraintWindTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintWind);
}
setup(constraint) {
return constraint.data.wind;
}
get(constraint) {
return constraint.wind;
}
set(constraint, value) {
constraint.wind = value;
}
global(constraint) {
return constraint.windGlobal;
}
};
var PhysicsConstraintGravityTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintGravity);
}
setup(constraint) {
return constraint.data.gravity;
}
get(constraint) {
return constraint.gravity;
}
set(constraint, value) {
constraint.gravity = value;
}
global(constraint) {
return constraint.gravityGlobal;
}
};
var PhysicsConstraintMixTimeline = class extends PhysicsConstraintTimeline {
constructor(frameCount, bezierCount, physicsConstraintIndex) {
super(frameCount, bezierCount, physicsConstraintIndex, Property.physicsConstraintMix);
}
setup(constraint) {
return constraint.data.mix;
}
get(constraint) {
return constraint.mix;
}
set(constraint, value) {
constraint.mix = value;
}
global(constraint) {
return constraint.mixGlobal;
}
};
var _PhysicsConstraintResetTimeline = class extends Timeline {
/** The index of the physics constraint in {@link Skeleton#getPhysicsConstraints()} that will be reset when this timeline is
* applied, or -1 if all physics constraints in the skeleton will be reset. */
constraintIndex;
/** @param physicsConstraintIndex -1 for all physics constraints in the skeleton. */
constructor(frameCount, physicsConstraintIndex) {
super(frameCount, _PhysicsConstraintResetTimeline.propertyIds);
this.constraintIndex = physicsConstraintIndex;
}
getFrameCount() {
return this.frames.length;
}
/** Sets the time for the specified frame.
* @param frame Between 0 and <code>frameCount</code>, inclusive. */
setFrame(frame, time) {
this.frames[frame] = time;
}
/** Resets the physics constraint when frames > <code>lastTime</code> and <= <code>time</code>. */
apply(skeleton, lastTime, time, firedEvents, alpha, blend, direction) {
let constraint;
if (this.constraintIndex != -1) {
constraint = skeleton.physicsConstraints[this.constraintIndex];
if (!constraint.active)
return;
}
const frames = this.frames;
if (lastTime > time) {
this.apply(skeleton, lastTime, Number.MAX_VALUE, [], alpha, blend, direction);
lastTime = -1;
} else if (lastTime >= frames[frames.length - 1])
return;
if (time < frames[0])
return;
if (lastTime < frames[0] || time >= frames[Timeline.search1(frames, lastTime) + 1]) {
if (constraint != null)
constraint.reset();
else {
for (const constraint2 of skeleton.physicsConstraints) {
if (constraint2.active)
constraint2.reset();
}
}
}
}
};
var PhysicsConstraintResetTimeline = _PhysicsConstraintResetTimeline;
__publicField(PhysicsConstraintResetTimeline, "propertyIds", [Property.physicsConstraintReset.toString()]);
var _SequenceTimeline = class extends Timeline {
slotIndex;
attachment;
constructor(frameCount, slotIndex, attachment) {
super(frameCount, [
Property.sequence + "|" + slotIndex + "|" + attachment.sequence.id
]);
this.slotIndex = slotIndex;
this.attachment = attachment;
}
getFrameEntries() {
return _SequenceTimeline.ENTRIES;
}
getSlotIndex() {
return this.slotIndex;
}
getAttachment() {
return this.attachment;
}
/** Sets the time, mode, index, and frame time for the specified frame.
* @param frame Between 0 and <code>frameCount</code>, inclusive.
* @param time Seconds between frames. */
setFrame(frame, time, mode, index, delay) {
let frames = this.frames;
frame *= _SequenceTimeline.ENTRIES;
frames[frame] = time;
frames[frame + _SequenceTimeline.MODE] = mode | index << 4;
frames[frame + _SequenceTimeline.DELAY] = delay;
}
apply(skeleton, lastTime, time, events, alpha, blend, direction) {
let slot = skeleton.slots[this.slotIndex];
if (!slot.bone.active)
return;
let slotAttachment = slot.attachment;
let attachment = this.attachment;
if (slotAttachment != attachment) {
if (!(slotAttachment instanceof VertexAttachment) || slotAttachment.timelineAttachment != attachment)
return;
}
if (direction == 1 /* mixOut */) {
if (blend == 0 /* setup */)
slot.sequenceIndex = -1;
return;
}
let frames = this.frames;
if (time < frames[0]) {
if (blend == 0 /* setup */ || blend == 1 /* first */)
slot.sequenceIndex = -1;
return;
}
let i = Timeline.search(frames, time, _SequenceTimeline.ENTRIES);
let before = frames[i];
let modeAndIndex = frames[i + _SequenceTimeline.MODE];
let delay = frames[i + _SequenceTimeline.DELAY];
if (!this.attachment.sequence)
return;
let index = modeAndIndex >> 4, count = this.attachment.sequence.regions.length;
let mode = SequenceModeValues[modeAndIndex & 15];
if (mode != 0 /* hold */) {
index += (time - before) / delay + 1e-5 | 0;
switch (mode) {
case 1 /* once */:
index = Math.min(count - 1, index);
break;
case 2 /* loop */:
index %= count;
break;
case 3 /* pingpong */: {
let n = (count << 1) - 2;
index = n == 0 ? 0 : index % n;
if (index >= count)
index = n - index;
break;
}
case 4 /* onceReverse */:
index = Math.max(count - 1 - index, 0);
break;
case 5 /* loopReverse */:
index = count - 1 - index % count;
break;
case 6 /* pingpongReverse */: {
let n = (count << 1) - 2;
index = n == 0 ? 0 : (index + count - 1) % n;
if (index >= count)
index = n - index;
}
}
}
slot.sequenceIndex = index;
}
};
var SequenceTimeline = _SequenceTimeline;
__publicField(SequenceTimeline, "ENTRIES", 3);
__publicField(SequenceTimeline, "MODE", 1);
__publicField(SequenceTimeline, "DELAY", 2);
// spine-core/src/AnimationState.ts
var _AnimationState = class {
static emptyAnimation() {
return _AnimationState._emptyAnimation;
}
/** The AnimationStateData to look up mix durations. */
data;
/** The list of tracks that currently have animations, which may contain null entries. */
tracks = new Array();
/** Multiplier for the delta time when the animation state is updated, causing time for all animations and mixes to play slower
* or faster. Defaults to 1.
*
* See TrackEntry {@link TrackEntry#timeScale} for affecting a single animation. */
timeScale = 1;
unkeyedState = 0;
events = new Array();
listeners = new Array();
queue = new EventQueue(this);
propertyIDs = new StringSet();
animationsChanged = false;
trackEntryPool = new Pool(() => new TrackEntry());
constructor(data) {
this.data = data;
}
/** Increments each track entry {@link TrackEntry#trackTime()}, setting queued animations as current if needed. */
update(delta) {
delta *= this.timeScale;
let tracks = this.tracks;
for (let i = 0, n = tracks.length; i < n; i++) {
let current = tracks[i];
if (!current)
continue;
current.animationLast = current.nextAnimationLast;
current.trackLast = current.nextTrackLast;
let currentDelta = delta * current.timeScale;
if (current.delay > 0) {
current.delay -= currentDelta;
if (current.delay > 0)
continue;
currentDelta = -current.delay;
current.delay = 0;
}
let next = current.next;
if (next) {
let nextTime = current.trackLast - next.delay;
if (nextTime >= 0) {
next.delay = 0;
next.trackTime += current.timeScale == 0 ? 0 : (nextTime / current.timeScale + delta) * next.timeScale;
current.trackTime += currentDelta;
this.setCurrent(i, next, true);
while (next.mixingFrom) {
next.mixTime += delta;
next = next.mixingFrom;
}
continue;
}
} else if (current.trackLast >= current.trackEnd && !current.mixingFrom) {
tracks[i] = null;
this.queue.end(current);
this.clearNext(current);
continue;
}
if (current.mixingFrom && this.updateMixingFrom(current, delta)) {
let from = current.mixingFrom;
current.mixingFrom = null;
if (from)
from.mixingTo = null;
while (from) {
this.queue.end(from);
from = from.mixingFrom;
}
}
current.trackTime += currentDelta;
}
this.queue.drain();
}
/** Returns true when all mixing from entries are complete. */
updateMixingFrom(to, delta) {
let from = to.mixingFrom;
if (!from)
return true;
let finished = this.updateMixingFrom(from, delta);
from.animationLast = from.nextAnimationLast;
from.trackLast = from.nextTrackLast;
if (to.nextTrackLast != -1 && to.mixTime >= to.mixDuration) {
if (from.totalAlpha == 0 || to.mixDuration == 0) {
to.mixingFrom = from.mixingFrom;
if (from.mixingFrom != null)
from.mixingFrom.mixingTo = to;
to.interruptAlpha = from.interruptAlpha;
this.queue.end(from);
}
return finished;
}
from.trackTime += delta * from.timeScale;
to.mixTime += delta;
return false;
}
/** Poses the skeleton using the track entry animations. There are no side effects other than invoking listeners, so the
* animation state can be applied to multiple skeletons to pose them identically.
* @returns True if any animations were applied. */
apply(skeleton) {
if (!skeleton)
throw new Error("skeleton cannot be null.");
if (this.animationsChanged)
this._animationsChanged();
let events = this.events;
let tracks = this.tracks;
let applied = false;
for (let i2 = 0, n2 = tracks.length; i2 < n2; i2++) {
let current = tracks[i2];
if (!current || current.delay > 0)
continue;
applied = true;
let blend = i2 == 0 ? 1 /* first */ : current.mixBlend;
let alpha = current.alpha;
if (current.mixingFrom)
alpha *= this.applyMixingFrom(current, skeleton, blend);
else if (current.trackTime >= current.trackEnd && !current.next)
alpha = 0;
let attachments = alpha >= current.alphaAttachmentThreshold;
let animationLast = current.animationLast, animationTime = current.getAnimationTime(), applyTime = animationTime;
let applyEvents = events;
if (current.reverse) {
applyTime = current.animation.duration - applyTime;
applyEvents = null;
}
let timelines = current.animation.timelines;
let timelineCount = timelines.length;
if (i2 == 0 && alpha == 1 || blend == 3 /* add */) {
if (i2 == 0)
attachments = true;
for (let ii = 0; ii < timelineCount; ii++) {
Utils.webkit602BugfixHelper(alpha, blend);
var timeline = timelines[ii];
if (timeline instanceof AttachmentTimeline)
this.applyAttachmentTimeline(timeline, skeleton, applyTime, blend, attachments);
else
timeline.apply(skeleton, animationLast, applyTime, applyEvents, alpha, blend, 0 /* mixIn */);
}
} else {
let timelineMode = current.timelineMode;
let shortestRotation = current.shortestRotation;
let firstFrame = !shortestRotation && current.timelinesRotation.length != timelineCount << 1;
if (firstFrame)
current.timelinesRotation.length = timelineCount << 1;
for (let ii = 0; ii < timelineCount; ii++) {
let timeline2 = timelines[ii];
let timelineBlend = timelineMode[ii] == SUBSEQUENT ? blend : 0 /* setup */;
if (!shortestRotation && timeline2 instanceof RotateTimeline) {
this.applyRotateTimeline(timeline2, skeleton, applyTime, alpha, timelineBlend, current.timelinesRotation, ii << 1, firstFrame);
} else if (timeline2 instanceof AttachmentTimeline) {
this.applyAttachmentTimeline(timeline2, skeleton, applyTime, blend, attachments);
} else {
Utils.webkit602BugfixHelper(alpha, blend);
timeline2.apply(skeleton, animationLast, applyTime, applyEvents, alpha, timelineBlend, 0 /* mixIn */);
}
}
}
this.queueEvents(current, animationTime);
events.length = 0;
current.nextAnimationLast = animationTime;
current.nextTrackLast = current.trackTime;
}
var setupState = this.unkeyedState + SETUP;
var slots = skeleton.slots;
for (var i = 0, n = skeleton.slots.length; i < n; i++) {
var slot = slots[i];
if (slot.attachmentState == setupState) {
var attachmentName = slot.data.attachmentName;
slot.setAttachment(!attachmentName ? null : skeleton.getAttachment(slot.data.index, attachmentName));
}
}
this.unkeyedState += 2;
this.queue.drain();
return applied;
}
applyMixingFrom(to, skeleton, blend) {
let from = to.mixingFrom;
if (from.mixingFrom)
this.applyMixingFrom(from, skeleton, blend);
let mix = 0;
if (to.mixDuration == 0) {
mix = 1;
if (blend == 1 /* first */)
blend = 0 /* setup */;
} else {
mix = to.mixTime / to.mixDuration;
if (mix > 1)
mix = 1;
if (blend != 1 /* first */)
blend = from.mixBlend;
}
let attachments = mix < from.mixAttachmentThreshold, drawOrder = mix < from.mixDrawOrderThreshold;
let timelines = from.animation.timelines;
let timelineCount = timelines.length;
let alphaHold = from.alpha * to.interruptAlpha, alphaMix = alphaHold * (1 - mix);
let animationLast = from.animationLast, animationTime = from.getAnimationTime(), applyTime = animationTime;
let events = null;
if (from.reverse)
applyTime = from.animation.duration - applyTime;
else if (mix < from.eventThreshold)
events = this.events;
if (blend == 3 /* add */) {
for (let i = 0; i < timelineCount; i++)
timelines[i].apply(skeleton, animationLast, applyTime, events, alphaMix, blend, 1 /* mixOut */);
} else {
let timelineMode = from.timelineMode;
let timelineHoldMix = from.timelineHoldMix;
let shortestRotation = from.shortestRotation;
let firstFrame = !shortestRotation && from.timelinesRotation.length != timelineCount << 1;
if (firstFrame)
from.timelinesRotation.length = timelineCount << 1;
from.totalAlpha = 0;
for (let i = 0; i < timelineCount; i++) {
let timeline = timelines[i];
let direction = 1 /* mixOut */;
let timelineBlend;
let alpha = 0;
switch (timelineMode[i]) {
case SUBSEQUENT:
if (!drawOrder && timeline instanceof DrawOrderTimeline)
continue;
timelineBlend = blend;
alpha = alphaMix;
break;
case FIRST:
timelineBlend = 0 /* setup */;
alpha = alphaMix;
break;
case HOLD_SUBSEQUENT:
timelineBlend = blend;
alpha = alphaHold;
break;
case HOLD_FIRST:
timelineBlend = 0 /* setup */;
alpha = alphaHold;
break;
default:
timelineBlend = 0 /* setup */;
let holdMix = timelineHoldMix[i];
alpha = alphaHold * Math.max(0, 1 - holdMix.mixTime / holdMix.mixDuration);
break;
}
from.totalAlpha += alpha;
if (!shortestRotation && timeline instanceof RotateTimeline)
this.applyRotateTimeline(timeline, skeleton, applyTime, alpha, timelineBlend, from.timelinesRotation, i << 1, firstFrame);
else if (timeline instanceof AttachmentTimeline)
this.applyAttachmentTimeline(timeline, skeleton, applyTime, timelineBlend, attachments && alpha >= from.alphaAttachmentThreshold);
else {
Utils.webkit602BugfixHelper(alpha, blend);
if (drawOrder && timeline instanceof DrawOrderTimeline && timelineBlend == 0 /* setup */)
direction = 0 /* mixIn */;
timeline.apply(skeleton, animationLast, applyTime, events, alpha, timelineBlend, direction);
}
}
}
if (to.mixDuration > 0)
this.queueEvents(from, animationTime);
this.events.length = 0;
from.nextAnimationLast = animationTime;
from.nextTrackLast = from.trackTime;
return mix;
}
applyAttachmentTimeline(timeline, skeleton, time, blend, attachments) {
var slot = skeleton.slots[timeline.slotIndex];
if (!slot.bone.active)
return;
if (time < timeline.frames[0]) {
if (blend == 0 /* setup */ || blend == 1 /* first */)
this.setAttachment(skeleton, slot, slot.data.attachmentName, attachments);
} else
this.setAttachment(skeleton, slot, timeline.attachmentNames[Timeline.search1(timeline.frames, time)], attachments);
if (slot.attachmentState <= this.unkeyedState)
slot.attachmentState = this.unkeyedState + SETUP;
}
setAttachment(skeleton, slot, attachmentName, attachments) {
slot.setAttachment(!attachmentName ? null : skeleton.getAttachment(slot.data.index, attachmentName));
if (attachments)
slot.attachmentState = this.unkeyedState + CURRENT;
}
applyRotateTimeline(timeline, skeleton, time, alpha, blend, timelinesRotation, i, firstFrame) {
if (firstFrame)
timelinesRotation[i] = 0;
if (alpha == 1) {
timeline.apply(skeleton, 0, time, null, 1, blend, 0 /* mixIn */);
return;
}
let bone = skeleton.bones[timeline.boneIndex];
if (!bone.active)
return;
let frames = timeline.frames;
let r1 = 0, r2 = 0;
if (time < frames[0]) {
switch (blend) {
case 0 /* setup */:
bone.rotation = bone.data.rotation;
default:
return;
case 1 /* first */:
r1 = bone.rotation;
r2 = bone.data.rotation;
}
} else {
r1 = blend == 0 /* setup */ ? bone.data.rotation : bone.rotation;
r2 = bone.data.rotation + timeline.getCurveValue(time);
}
let total = 0, diff = r2 - r1;
diff -= Math.ceil(diff / 360 - 0.5) * 360;
if (diff == 0) {
total = timelinesRotation[i];
} else {
let lastTotal = 0, lastDiff = 0;
if (firstFrame) {
lastTotal = 0;
lastDiff = diff;
} else {
lastTotal = timelinesRotation[i];
lastDiff = timelinesRotation[i + 1];
}
let loops = lastTotal - lastTotal % 360;
total = diff + loops;
let current = diff >= 0, dir = lastTotal >= 0;
if (Math.abs(lastDiff) <= 90 && MathUtils.signum(lastDiff) != MathUtils.signum(diff)) {
if (Math.abs(lastTotal - loops) > 180) {
total += 360 * MathUtils.signum(lastTotal);
dir = current;
} else if (loops != 0)
total -= 360 * MathUtils.signum(lastTotal);
else
dir = current;
}
if (dir != current)
total += 360 * MathUtils.signum(lastTotal);
timelinesRotation[i] = total;
}
timelinesRotation[i + 1] = diff;
bone.rotation = r1 + total * alpha;
}
queueEvents(entry, animationTime) {
let animationStart = entry.animationStart, animationEnd = entry.animationEnd;
let duration = animationEnd - animationStart;
let trackLastWrapped = entry.trackLast % duration;
let events = this.events;
let i = 0, n = events.length;
for (; i < n; i++) {
let event = events[i];
if (event.time < trackLastWrapped)
break;
if (event.time > animationEnd)
continue;
this.queue.event(entry, event);
}
let complete = false;
if (entry.loop) {
if (duration == 0)
complete = true;
else {
const cycles = Math.floor(entry.trackTime / duration);
complete = cycles > 0 && cycles > Math.floor(entry.trackLast / duration);
}
} else
complete = animationTime >= animationEnd && entry.animationLast < animationEnd;
if (complete)
this.queue.complete(entry);
for (; i < n; i++) {
let event = events[i];
if (event.time < animationStart)
continue;
this.queue.event(entry, event);
}
}
/** Removes all animations from all tracks, leaving skeletons in their current pose.
*
* It may be desired to use {@link AnimationState#setEmptyAnimation()} to mix the skeletons back to the setup pose,
* rather than leaving them in their current pose. */
clearTracks() {
let oldDrainDisabled = this.queue.drainDisabled;
this.queue.drainDisabled = true;
for (let i = 0, n = this.tracks.length; i < n; i++)
this.clearTrack(i);
this.tracks.length = 0;
this.queue.drainDisabled = oldDrainDisabled;
this.queue.drain();
}
/** Removes all animations from the track, leaving skeletons in their current pose.
*
* It may be desired to use {@link AnimationState#setEmptyAnimation()} to mix the skeletons back to the setup pose,
* rather than leaving them in their current pose. */
clearTrack(trackIndex) {
if (trackIndex >= this.tracks.length)
return;
let current = this.tracks[trackIndex];
if (!current)
return;
this.queue.end(current);
this.clearNext(current);
let entry = current;
while (true) {
let from = entry.mixingFrom;
if (!from)
break;
this.queue.end(from);
entry.mixingFrom = null;
entry.mixingTo = null;
entry = from;
}
this.tracks[current.trackIndex] = null;
this.queue.drain();
}
setCurrent(index, current, interrupt) {
let from = this.expandToIndex(index);
this.tracks[index] = current;
current.previous = null;
if (from) {
if (interrupt)
this.queue.interrupt(from);
current.mixingFrom = from;
from.mixingTo = current;
current.mixTime = 0;
if (from.mixingFrom && from.mixDuration > 0)
current.interruptAlpha *= Math.min(1, from.mixTime / from.mixDuration);
from.timelinesRotation.length = 0;
}
this.queue.start(current);
}
/** Sets an animation by name.
*
* See {@link #setAnimationWith()}. */
setAnimation(trackIndex, animationName, loop = false) {
let animation = this.data.skeletonData.findAnimation(animationName);
if (!animation)
throw new Error("Animation not found: " + animationName);
return this.setAnimationWith(trackIndex, animation, loop);
}
/** Sets the current animation for a track, discarding any queued animations. If the formerly current track entry was never
* applied to a skeleton, it is replaced (not mixed from).
* @param loop If true, the animation will repeat. If false it will not, instead its last frame is applied if played beyond its
* duration. In either case {@link TrackEntry#trackEnd} determines when the track is cleared.
* @returns A track entry to allow further customization of animation playback. References to the track entry must not be kept
* after the {@link AnimationStateListener#dispose()} event occurs. */
setAnimationWith(trackIndex, animation, loop = false) {
if (!animation)
throw new Error("animation cannot be null.");
let interrupt = true;
let current = this.expandToIndex(trackIndex);
if (current) {
if (current.nextTrackLast == -1) {
this.tracks[trackIndex] = current.mixingFrom;
this.queue.interrupt(current);
this.queue.end(current);
this.clearNext(current);
current = current.mixingFrom;
interrupt = false;
} else
this.clearNext(current);
}
let entry = this.trackEntry(trackIndex, animation, loop, current);
this.setCurrent(trackIndex, entry, interrupt);
this.queue.drain();
return entry;
}
/** Queues an animation by name.
*
* See {@link #addAnimationWith()}. */
addAnimation(trackIndex, animationName, loop = false, delay = 0) {
let animation = this.data.skeletonData.findAnimation(animationName);
if (!animation)
throw new Error("Animation not found: " + animationName);
return this.addAnimationWith(trackIndex, animation, loop, delay);
}
/** Adds an animation to be played after the current or last queued animation for a track. If the track is empty, it is
* equivalent to calling {@link #setAnimationWith()}.
* @param delay If > 0, sets {@link TrackEntry#delay}. If <= 0, the delay set is the duration of the previous track entry
* minus any mix duration (from the {@link AnimationStateData}) plus the specified `delay` (ie the mix
* ends at (`delay` = 0) or before (`delay` < 0) the previous track entry duration). If the
* previous entry is looping, its next loop completion is used instead of its duration.
* @returns A track entry to allow further customization of animation playback. References to the track entry must not be kept
* after the {@link AnimationStateListener#dispose()} event occurs. */
addAnimationWith(trackIndex, animation, loop = false, delay = 0) {
if (!animation)
throw new Error("animation cannot be null.");
let last = this.expandToIndex(trackIndex);
if (last) {
while (last.next)
last = last.next;
}
let entry = this.trackEntry(trackIndex, animation, loop, last);
if (!last) {
this.setCurrent(trackIndex, entry, true);
this.queue.drain();
} else {
last.next = entry;
entry.previous = last;
if (delay <= 0)
delay += last.getTrackComplete() - entry.mixDuration;
}
entry.delay = delay;
return entry;
}
/** Sets an empty animation for a track, discarding any queued animations, and sets the track entry's
* {@link TrackEntry#mixduration}. An empty animation has no timelines and serves as a placeholder for mixing in or out.
*
* Mixing out is done by setting an empty animation with a mix duration using either {@link #setEmptyAnimation()},
* {@link #setEmptyAnimations()}, or {@link #addEmptyAnimation()}. Mixing to an empty animation causes
* the previous animation to be applied less and less over the mix duration. Properties keyed in the previous animation
* transition to the value from lower tracks or to the setup pose value if no lower tracks key the property. A mix duration of
* 0 still mixes out over one frame.
*
* Mixing in is done by first setting an empty animation, then adding an animation using
* {@link #addAnimation()} and on the returned track entry, set the
* {@link TrackEntry#setMixDuration()}. Mixing from an empty animation causes the new animation to be applied more and
* more over the mix duration. Properties keyed in the new animation transition from the value from lower tracks or from the
* setup pose value if no lower tracks key the property to the value keyed in the new animation. */
setEmptyAnimation(trackIndex, mixDuration = 0) {
let entry = this.setAnimationWith(trackIndex, _AnimationState.emptyAnimation(), false);
entry.mixDuration = mixDuration;
entry.trackEnd = mixDuration;
return entry;
}
/** Adds an empty animation to be played after the current or last queued animation for a track, and sets the track entry's
* {@link TrackEntry#mixDuration}. If the track is empty, it is equivalent to calling
* {@link #setEmptyAnimation()}.
*
* See {@link #setEmptyAnimation()}.
* @param delay If > 0, sets {@link TrackEntry#delay}. If <= 0, the delay set is the duration of the previous track entry
* minus any mix duration plus the specified `delay` (ie the mix ends at (`delay` = 0) or
* before (`delay` < 0) the previous track entry duration). If the previous entry is looping, its next
* loop completion is used instead of its duration.
* @return A track entry to allow further customization of animation playback. References to the track entry must not be kept
* after the {@link AnimationStateListener#dispose()} event occurs. */
addEmptyAnimation(trackIndex, mixDuration = 0, delay = 0) {
let entry = this.addAnimationWith(trackIndex, _AnimationState.emptyAnimation(), false, delay);
if (delay <= 0)
entry.delay += entry.mixDuration - mixDuration;
entry.mixDuration = mixDuration;
entry.trackEnd = mixDuration;
return entry;
}
/** Sets an empty animation for every track, discarding any queued animations, and mixes to it over the specified mix
* duration. */
setEmptyAnimations(mixDuration = 0) {
let oldDrainDisabled = this.queue.drainDisabled;
this.queue.drainDisabled = true;
for (let i = 0, n = this.tracks.length; i < n; i++) {
let current = this.tracks[i];
if (current)
this.setEmptyAnimation(current.trackIndex, mixDuration);
}
this.queue.drainDisabled = oldDrainDisabled;
this.queue.drain();
}
expandToIndex(index) {
if (index < this.tracks.length)
return this.tracks[index];
Utils.ensureArrayCapacity(this.tracks, index + 1, null);
this.tracks.length = index + 1;
return null;
}
/** @param last May be null. */
trackEntry(trackIndex, animation, loop, last) {
let entry = this.trackEntryPool.obtain();
entry.reset();
entry.trackIndex = trackIndex;
entry.animation = animation;
entry.loop = loop;
entry.holdPrevious = false;
entry.reverse = false;
entry.shortestRotation = false;
entry.eventThreshold = 0;
entry.alphaAttachmentThreshold = 0;
entry.mixAttachmentThreshold = 0;
entry.mixDrawOrderThreshold = 0;
entry.animationStart = 0;
entry.animationEnd = animation.duration;
entry.animationLast = -1;
entry.nextAnimationLast = -1;
entry.delay = 0;
entry.trackTime = 0;
entry.trackLast = -1;
entry.nextTrackLast = -1;
entry.trackEnd = Number.MAX_VALUE;
entry.timeScale = 1;
entry.alpha = 1;
entry.mixTime = 0;
entry.mixDuration = !last ? 0 : this.data.getMix(last.animation, animation);
entry.interruptAlpha = 1;
entry.totalAlpha = 0;
entry.mixBlend = 2 /* replace */;
return entry;
}
/** Removes the {@link TrackEntry#getNext() next entry} and all entries after it for the specified entry. */
clearNext(entry) {
let next = entry.next;
while (next) {
this.queue.dispose(next);
next = next.next;
}
entry.next = null;
}
_animationsChanged() {
this.animationsChanged = false;
this.propertyIDs.clear();
let tracks = this.tracks;
for (let i = 0, n = tracks.length; i < n; i++) {
let entry = tracks[i];
if (!entry)
continue;
while (entry.mixingFrom)
entry = entry.mixingFrom;
do {
if (!entry.mixingTo || entry.mixBlend != 3 /* add */)
this.computeHold(entry);
entry = entry.mixingTo;
} while (entry);
}
}
computeHold(entry) {
let to = entry.mixingTo;
let timelines = entry.animation.timelines;
let timelinesCount = entry.animation.timelines.length;
let timelineMode = entry.timelineMode;
timelineMode.length = timelinesCount;
let timelineHoldMix = entry.timelineHoldMix;
timelineHoldMix.length = 0;
let propertyIDs = this.propertyIDs;
if (to && to.holdPrevious) {
for (let i = 0; i < timelinesCount; i++)
timelineMode[i] = propertyIDs.addAll(timelines[i].getPropertyIds()) ? HOLD_FIRST : HOLD_SUBSEQUENT;
return;
}
outer:
for (let i = 0; i < timelinesCount; i++) {
let timeline = timelines[i];
let ids = timeline.getPropertyIds();
if (!propertyIDs.addAll(ids))
timelineMode[i] = SUBSEQUENT;
else if (!to || timeline instanceof AttachmentTimeline || timeline instanceof DrawOrderTimeline || timeline instanceof EventTimeline || !to.animation.hasTimeline(ids)) {
timelineMode[i] = FIRST;
} else {
for (let next = to.mixingTo; next; next = next.mixingTo) {
if (next.animation.hasTimeline(ids))
continue;
if (entry.mixDuration > 0) {
timelineMode[i] = HOLD_MIX;
timelineHoldMix[i] = next;
continue outer;
}
break;
}
timelineMode[i] = HOLD_FIRST;
}
}
}
/** Returns the track entry for the animation currently playing on the track, or null if no animation is currently playing. */
getCurrent(trackIndex) {
if (trackIndex >= this.tracks.length)
return null;
return this.tracks[trackIndex];
}
/** Adds a listener to receive events for all track entries. */
addListener(listener) {
if (!listener)
throw new Error("listener cannot be null.");
this.listeners.push(listener);
}
/** Removes the listener added with {@link #addListener()}. */
removeListener(listener) {
let index = this.listeners.indexOf(listener);
if (index >= 0)
this.listeners.splice(index, 1);
}
/** Removes all listeners added with {@link #addListener()}. */
clearListeners() {
this.listeners.length = 0;
}
/** Discards all listener notifications that have not yet been delivered. This can be useful to call from an
* {@link AnimationStateListener} when it is known that further notifications that may have been already queued for delivery
* are not wanted because new animations are being set. */
clearListenerNotifications() {
this.queue.clear();
}
};
var AnimationState = _AnimationState;
__publicField(AnimationState, "_emptyAnimation", new Animation("<empty>", [], 0));
var TrackEntry = class {
/** The animation to apply for this track entry. */
animation = null;
previous = null;
/** The animation queued to start after this animation, or null. `next` makes up a linked list. */
next = null;
/** The track entry for the previous animation when mixing from the previous animation to this animation, or null if no
* mixing is currently occuring. When mixing from multiple animations, `mixingFrom` makes up a linked list. */
mixingFrom = null;
/** The track entry for the next animation when mixing from this animation to the next animation, or null if no mixing is
* currently occuring. When mixing to multiple animations, `mixingTo` makes up a linked list. */
mixingTo = null;
/** The listener for events generated by this track entry, or null.
*
* A track entry returned from {@link AnimationState#setAnimation()} is already the current animation
* for the track, so the track entry listener {@link AnimationStateListener#start()} will not be called. */
listener = null;
/** The index of the track where this track entry is either current or queued.
*
* See {@link AnimationState#getCurrent()}. */
trackIndex = 0;
/** If true, the animation will repeat. If false it will not, instead its last frame is applied if played beyond its
* duration. */
loop = false;
/** If true, when mixing from the previous animation to this animation, the previous animation is applied as normal instead
* of being mixed out.
*
* When mixing between animations that key the same property, if a lower track also keys that property then the value will
* briefly dip toward the lower track value during the mix. This happens because the first animation mixes from 100% to 0%
* while the second animation mixes from 0% to 100%. Setting `holdPrevious` to true applies the first animation
* at 100% during the mix so the lower track value is overwritten. Such dipping does not occur on the lowest track which
* keys the property, only when a higher track also keys the property.
*
* Snapping will occur if `holdPrevious` is true and this animation does not key all the same properties as the
* previous animation. */
holdPrevious = false;
reverse = false;
shortestRotation = false;
/** When the mix percentage ({@link #mixTime} / {@link #mixDuration}) is less than the
* `eventThreshold`, event timelines are applied while this animation is being mixed out. Defaults to 0, so event
* timelines are not applied while this animation is being mixed out. */
eventThreshold = 0;
/** When the mix percentage ({@link #mixtime} / {@link #mixDuration}) is less than the
* `attachmentThreshold`, attachment timelines are applied while this animation is being mixed out. Defaults to
* 0, so attachment timelines are not applied while this animation is being mixed out. */
mixAttachmentThreshold = 0;
/** When {@link #getAlpha()} is greater than <code>alphaAttachmentThreshold</code>, attachment timelines are applied.
* Defaults to 0, so attachment timelines are always applied. */
alphaAttachmentThreshold = 0;
/** When the mix percentage ({@link #getMixTime()} / {@link #getMixDuration()}) is less than the
* <code>mixDrawOrderThreshold</code>, draw order timelines are applied while this animation is being mixed out. Defaults to
* 0, so draw order timelines are not applied while this animation is being mixed out. */
mixDrawOrderThreshold = 0;
/** Seconds when this animation starts, both initially and after looping. Defaults to 0.
*
* When changing the `animationStart` time, it often makes sense to set {@link #animationLast} to the same
* value to prevent timeline keys before the start time from triggering. */
animationStart = 0;
/** Seconds for the last frame of this animation. Non-looping animations won't play past this time. Looping animations will
* loop back to {@link #animationStart} at this time. Defaults to the animation {@link Animation#duration}. */
animationEnd = 0;
/** The time in seconds this animation was last applied. Some timelines use this for one-time triggers. Eg, when this
* animation is applied, event timelines will fire all events between the `animationLast` time (exclusive) and
* `animationTime` (inclusive). Defaults to -1 to ensure triggers on frame 0 happen the first time this animation
* is applied. */
animationLast = 0;
nextAnimationLast = 0;
/** Seconds to postpone playing the animation. When this track entry is the current track entry, `delay`
* postpones incrementing the {@link #trackTime}. When this track entry is queued, `delay` is the time from
* the start of the previous animation to when this track entry will become the current track entry (ie when the previous
* track entry {@link TrackEntry#trackTime} >= this track entry's `delay`).
*
* {@link #timeScale} affects the delay. */
delay = 0;
/** Current time in seconds this track entry has been the current track entry. The track time determines
* {@link #animationTime}. The track time can be set to start the animation at a time other than 0, without affecting
* looping. */
trackTime = 0;
trackLast = 0;
nextTrackLast = 0;
/** The track time in seconds when this animation will be removed from the track. Defaults to the highest possible float
* value, meaning the animation will be applied until a new animation is set or the track is cleared. If the track end time
* is reached, no other animations are queued for playback, and mixing from any previous animations is complete, then the
* properties keyed by the animation are set to the setup pose and the track is cleared.
*
* It may be desired to use {@link AnimationState#addEmptyAnimation()} rather than have the animation
* abruptly cease being applied. */
trackEnd = 0;
/** Multiplier for the delta time when this track entry is updated, causing time for this animation to pass slower or
* faster. Defaults to 1.
*
* {@link #mixTime} is not affected by track entry time scale, so {@link #mixDuration} may need to be adjusted to
* match the animation speed.
*
* When using {@link AnimationState#addAnimation()} with a `delay` <= 0, note the
* {@link #delay} is set using the mix duration from the {@link AnimationStateData}, assuming time scale to be 1. If
* the time scale is not 1, the delay may need to be adjusted.
*
* See AnimationState {@link AnimationState#timeScale} for affecting all animations. */
timeScale = 0;
/** Values < 1 mix this animation with the skeleton's current pose (usually the pose resulting from lower tracks). Defaults
* to 1, which overwrites the skeleton's current pose with this animation.
*
* Typically track 0 is used to completely pose the skeleton, then alpha is used on higher tracks. It doesn't make sense to
* use alpha on track 0 if the skeleton pose is from the last frame render. */
alpha = 0;
/** Seconds from 0 to the {@link #getMixDuration()} when mixing from the previous animation to this animation. May be
* slightly more than `mixDuration` when the mix is complete. */
mixTime = 0;
/** Seconds for mixing from the previous animation to this animation. Defaults to the value provided by AnimationStateData
* {@link AnimationStateData#getMix()} based on the animation before this animation (if any).
*
* A mix duration of 0 still mixes out over one frame to provide the track entry being mixed out a chance to revert the
* properties it was animating.
*
* The `mixDuration` can be set manually rather than use the value from
* {@link AnimationStateData#getMix()}. In that case, the `mixDuration` can be set for a new
* track entry only before {@link AnimationState#update(float)} is first called.
*
* When using {@link AnimationState#addAnimation()} with a `delay` <= 0, note the
* {@link #delay} is set using the mix duration from the {@link AnimationStateData}, not a mix duration set
* afterward. */
_mixDuration = 0;
interruptAlpha = 0;
totalAlpha = 0;
get mixDuration() {
return this._mixDuration;
}
set mixDuration(mixDuration) {
this._mixDuration = mixDuration;
}
setMixDurationWithDelay(mixDuration, delay) {
this._mixDuration = mixDuration;
if (this.previous != null && delay <= 0)
delay += this.previous.getTrackComplete() - mixDuration;
this.delay = delay;
}
/** Controls how properties keyed in the animation are mixed with lower tracks. Defaults to {@link MixBlend#replace}, which
* replaces the values from the lower tracks with the animation values. {@link MixBlend#add} adds the animation values to
* the values from the lower tracks.
*
* The `mixBlend` can be set for a new track entry only before {@link AnimationState#apply()} is first
* called. */
mixBlend = 2 /* replace */;
timelineMode = new Array();
timelineHoldMix = new Array();
timelinesRotation = new Array();
reset() {
this.next = null;
this.previous = null;
this.mixingFrom = null;
this.mixingTo = null;
this.animation = null;
this.listener = null;
this.timelineMode.length = 0;
this.timelineHoldMix.length = 0;
this.timelinesRotation.length = 0;
}
/** Uses {@link #trackTime} to compute the `animationTime`, which is between {@link #animationStart}
* and {@link #animationEnd}. When the `trackTime` is 0, the `animationTime` is equal to the
* `animationStart` time. */
getAnimationTime() {
if (this.loop) {
let duration = this.animationEnd - this.animationStart;
if (duration == 0)
return this.animationStart;
return this.trackTime % duration + this.animationStart;
}
return Math.min(this.trackTime + this.animationStart, this.animationEnd);
}
setAnimationLast(animationLast) {
this.animationLast = animationLast;
this.nextAnimationLast = animationLast;
}
/** Returns true if at least one loop has been completed.
*
* See {@link AnimationStateListener#complete()}. */
isComplete() {
return this.trackTime >= this.animationEnd - this.animationStart;
}
/** Resets the rotation directions for mixing this entry's rotate timelines. This can be useful to avoid bones rotating the
* long way around when using {@link #alpha} and starting animations on other tracks.
*
* Mixing with {@link MixBlend#replace} involves finding a rotation between two others, which has two possible solutions:
* the short way or the long way around. The two rotations likely change over time, so which direction is the short or long
* way also changes. If the short way was always chosen, bones would flip to the other side when that direction became the
* long way. TrackEntry chooses the short way the first time it is applied and remembers that direction. */
resetRotationDirections() {
this.timelinesRotation.length = 0;
}
getTrackComplete() {
let duration = this.animationEnd - this.animationStart;
if (duration != 0) {
if (this.loop)
return duration * (1 + (this.trackTime / duration | 0));
if (this.trackTime < duration)
return duration;
}
return this.trackTime;
}
/** Returns true if this track entry has been applied at least once.
* <p>
* See {@link AnimationState#apply(Skeleton)}. */
wasApplied() {
return this.nextTrackLast != -1;
}
/** Returns true if there is a {@link #getNext()} track entry and it will become the current track entry during the next
* {@link AnimationState#update(float)}. */
isNextReady() {
return this.next != null && this.nextTrackLast - this.next.delay >= 0;
}
};
var EventQueue = class {
objects = [];
drainDisabled = false;
animState;
constructor(animState) {
this.animState = animState;
}
start(entry) {
this.objects.push(EventType.start);
this.objects.push(entry);
this.animState.animationsChanged = true;
}
interrupt(entry) {
this.objects.push(EventType.interrupt);
this.objects.push(entry);
}
end(entry) {
this.objects.push(EventType.end);
this.objects.push(entry);
this.animState.animationsChanged = true;
}
dispose(entry) {
this.objects.push(EventType.dispose);
this.objects.push(entry);
}
complete(entry) {
this.objects.push(EventType.complete);
this.objects.push(entry);
}
event(entry, event) {
this.objects.push(EventType.event);
this.objects.push(entry);
this.objects.push(event);
}
drain() {
if (this.drainDisabled)
return;
this.drainDisabled = true;
let objects = this.objects;
let listeners = this.animState.listeners;
for (let i = 0; i < objects.length; i += 2) {
let type = objects[i];
let entry = objects[i + 1];
switch (type) {
case EventType.start:
if (entry.listener && entry.listener.start)
entry.listener.start(entry);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.start)
listener.start(entry);
}
break;
case EventType.interrupt:
if (entry.listener && entry.listener.interrupt)
entry.listener.interrupt(entry);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.interrupt)
listener.interrupt(entry);
}
break;
case EventType.end:
if (entry.listener && entry.listener.end)
entry.listener.end(entry);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.end)
listener.end(entry);
}
case EventType.dispose:
if (entry.listener && entry.listener.dispose)
entry.listener.dispose(entry);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.dispose)
listener.dispose(entry);
}
this.animState.trackEntryPool.free(entry);
break;
case EventType.complete:
if (entry.listener && entry.listener.complete)
entry.listener.complete(entry);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.complete)
listener.complete(entry);
}
break;
case EventType.event:
let event = objects[i++ + 2];
if (entry.listener && entry.listener.event)
entry.listener.event(entry, event);
for (let ii = 0; ii < listeners.length; ii++) {
let listener = listeners[ii];
if (listener.event)
listener.event(entry, event);
}
break;
}
}
this.clear();
this.drainDisabled = false;
}
clear() {
this.objects.length = 0;
}
};
var EventType = /* @__PURE__ */ ((EventType2) => {
EventType2[EventType2["start"] = 0] = "start";
EventType2[EventType2["interrupt"] = 1] = "interrupt";
EventType2[EventType2["end"] = 2] = "end";
EventType2[EventType2["dispose"] = 3] = "dispose";
EventType2[EventType2["complete"] = 4] = "complete";
EventType2[EventType2["event"] = 5] = "event";
return EventType2;
})(EventType || {});
var AnimationStateAdapter = class {
start(entry) {
}
interrupt(entry) {
}
end(entry) {
}
dispose(entry) {
}
complete(entry) {
}
event(entry, event) {
}
};
var SUBSEQUENT = 0;
var FIRST = 1;
var HOLD_SUBSEQUENT = 2;
var HOLD_FIRST = 3;
var HOLD_MIX = 4;
var SETUP = 1;
var CURRENT = 2;
// spine-core/src/AnimationStateData.ts
var AnimationStateData = class {
/** The SkeletonData to look up animations when they are specified by name. */
skeletonData;
animationToMixTime = {};
/** The mix duration to use when no mix duration has been defined between two animations. */
defaultMix = 0;
constructor(skeletonData) {
if (!skeletonData)
throw new Error("skeletonData cannot be null.");
this.skeletonData = skeletonData;
}
/** Sets a mix duration by animation name.
*
* See {@link #setMixWith()}. */
setMix(fromName, toName, duration) {
let from = this.skeletonData.findAnimation(fromName);
if (!from)
throw new Error("Animation not found: " + fromName);
let to = this.skeletonData.findAnimation(toName);
if (!to)
throw new Error("Animation not found: " + toName);
this.setMixWith(from, to, duration);
}
/** Sets the mix duration when changing from the specified animation to the other.
*
* See {@link TrackEntry#mixDuration}. */
setMixWith(from, to, duration) {
if (!from)
throw new Error("from cannot be null.");
if (!to)
throw new Error("to cannot be null.");
let key = from.name + "." + to.name;
this.animationToMixTime[key] = duration;
}
/** Returns the mix duration to use when changing from the specified animation to the other, or the {@link #defaultMix} if
* no mix duration has been set. */
getMix(from, to) {
let key = from.name + "." + to.name;
let value = this.animationToMixTime[key];
return value === void 0 ? this.defaultMix : value;
}
};
// spine-core/src/attachments/BoundingBoxAttachment.ts
var BoundingBoxAttachment = class extends VertexAttachment {
color = new Color(1, 1, 1, 1);
constructor(name) {
super(name);
}
copy() {
let copy = new BoundingBoxAttachment(this.name);
this.copyTo(copy);
copy.color.setFromColor(this.color);
return copy;
}
};
// spine-core/src/attachments/ClippingAttachment.ts
var ClippingAttachment = class extends VertexAttachment {
/** Clipping is performed between the clipping polygon's slot and the end slot. Returns null if clipping is done until the end of
* the skeleton's rendering. */
endSlot = null;
// Nonessential.
/** The color of the clipping polygon as it was in Spine. Available only when nonessential data was exported. Clipping polygons
* are not usually rendered at runtime. */
color = new Color(0.2275, 0.2275, 0.8078, 1);
// ce3a3aff
constructor(name) {
super(name);
}
copy() {
let copy = new ClippingAttachment(this.name);
this.copyTo(copy);
copy.endSlot = this.endSlot;
copy.color.setFromColor(this.color);
return copy;
}
};
// spine-core/src/Texture.ts
var Texture = class {
_image;
constructor(image) {
this._image = image;
}
getImage() {
return this._image;
}
};
var TextureFilter = /* @__PURE__ */ ((TextureFilter3) => {
TextureFilter3[TextureFilter3["Nearest"] = 9728] = "Nearest";
TextureFilter3[TextureFilter3["Linear"] = 9729] = "Linear";
TextureFilter3[TextureFilter3["MipMap"] = 9987] = "MipMap";
TextureFilter3[TextureFilter3["MipMapNearestNearest"] = 9984] = "MipMapNearestNearest";
TextureFilter3[TextureFilter3["MipMapLinearNearest"] = 9985] = "MipMapLinearNearest";
TextureFilter3[TextureFilter3["MipMapNearestLinear"] = 9986] = "MipMapNearestLinear";
TextureFilter3[TextureFilter3["MipMapLinearLinear"] = 9987] = "MipMapLinearLinear";
return TextureFilter3;
})(TextureFilter || {});
var TextureWrap = /* @__PURE__ */ ((TextureWrap4) => {
TextureWrap4[TextureWrap4["MirroredRepeat"] = 33648] = "MirroredRepeat";
TextureWrap4[TextureWrap4["ClampToEdge"] = 33071] = "ClampToEdge";
TextureWrap4[TextureWrap4["Repeat"] = 10497] = "Repeat";
return TextureWrap4;
})(TextureWrap || {});
var TextureRegion = class {
texture;
u = 0;
v = 0;
u2 = 0;
v2 = 0;
width = 0;
height = 0;
degrees = 0;
offsetX = 0;
offsetY = 0;
originalWidth = 0;
originalHeight = 0;
};
var FakeTexture = class extends Texture {
setFilters(minFilter, magFilter) {
}
setWraps(uWrap, vWrap) {
}
dispose() {
}
};
// spine-core/src/TextureAtlas.ts
var TextureAtlas = class {
pages = new Array();
regions = new Array();
constructor(atlasText) {
let reader = new TextureAtlasReader(atlasText);
let entry = new Array(4);
let pageFields = {};
pageFields["size"] = (page2) => {
page2.width = parseInt(entry[1]);
page2.height = parseInt(entry[2]);
};
pageFields["format"] = () => {
};
pageFields["filter"] = (page2) => {
page2.minFilter = Utils.enumValue(TextureFilter, entry[1]);
page2.magFilter = Utils.enumValue(TextureFilter, entry[2]);
};
pageFields["repeat"] = (page2) => {
if (entry[1].indexOf("x") != -1)
page2.uWrap = 10497 /* Repeat */;
if (entry[1].indexOf("y") != -1)
page2.vWrap = 10497 /* Repeat */;
};
pageFields["pma"] = (page2) => {
page2.pma = entry[1] == "true";
};
var regionFields = {};
regionFields["xy"] = (region) => {
region.x = parseInt(entry[1]);
region.y = parseInt(entry[2]);
};
regionFields["size"] = (region) => {
region.width = parseInt(entry[1]);
region.height = parseInt(entry[2]);
};
regionFields["bounds"] = (region) => {
region.x = parseInt(entry[1]);
region.y = parseInt(entry[2]);
region.width = parseInt(entry[3]);
region.height = parseInt(entry[4]);
};
regionFields["offset"] = (region) => {
region.offsetX = parseInt(entry[1]);
region.offsetY = parseInt(entry[2]);
};
regionFields["orig"] = (region) => {
region.originalWidth = parseInt(entry[1]);
region.originalHeight = parseInt(entry[2]);
};
regionFields["offsets"] = (region) => {
region.offsetX = parseInt(entry[1]);
region.offsetY = parseInt(entry[2]);
region.originalWidth = parseInt(entry[3]);
region.originalHeight = parseInt(entry[4]);
};
regionFields["rotate"] = (region) => {
let value = entry[1];
if (value == "true")
region.degrees = 90;
else if (value != "false")
region.degrees = parseInt(value);
};
regionFields["index"] = (region) => {
region.index = parseInt(entry[1]);
};
let line = reader.readLine();
while (line && line.trim().length == 0)
line = reader.readLine();
while (true) {
if (!line || line.trim().length == 0)
break;
if (reader.readEntry(entry, line) == 0)
break;
line = reader.readLine();
}
let page = null;
let names = null;
let values = null;
while (true) {
if (line === null)
break;
if (line.trim().length == 0) {
page = null;
line = reader.readLine();
} else if (!page) {
page = new TextureAtlasPage(line.trim());
while (true) {
if (reader.readEntry(entry, line = reader.readLine()) == 0)
break;
let field = pageFields[entry[0]];
if (field)
field(page);
}
this.pages.push(page);
} else {
let region = new TextureAtlasRegion(page, line);
while (true) {
let count = reader.readEntry(entry, line = reader.readLine());
if (count == 0)
break;
let field = regionFields[entry[0]];
if (field)
field(region);
else {
if (!names)
names = [];
if (!values)
values = [];
names.push(entry[0]);
let entryValues = [];
for (let i = 0; i < count; i++)
entryValues.push(parseInt(entry[i + 1]));
values.push(entryValues);
}
}
if (region.originalWidth == 0 && region.originalHeight == 0) {
region.originalWidth = region.width;
region.originalHeight = region.height;
}
if (names && names.length > 0 && values && values.length > 0) {
region.names = names;
region.values = values;
names = null;
values = null;
}
region.u = region.x / page.width;
region.v = region.y / page.height;
if (region.degrees == 90) {
region.u2 = (region.x + region.height) / page.width;
region.v2 = (region.y + region.width) / page.height;
} else {
region.u2 = (region.x + region.width) / page.width;
region.v2 = (region.y + region.height) / page.height;
}
this.regions.push(region);
}
}
}
findRegion(name) {
for (let i = 0; i < this.regions.length; i++) {
if (this.regions[i].name == name) {
return this.regions[i];
}
}
return null;
}
setTextures(assetManager, pathPrefix = "") {
for (let page of this.pages)
page.setTexture(assetManager.get(pathPrefix + page.name));
}
dispose() {
for (let i = 0; i < this.pages.length; i++) {
this.pages[i].texture?.dispose();
}
}
};
var TextureAtlasReader = class {
lines;
index = 0;
constructor(text) {
this.lines = text.split(/\r\n|\r|\n/);
}
readLine() {
if (this.index >= this.lines.length)
return null;
return this.lines[this.index++];
}
readEntry(entry, line) {
if (!line)
return 0;
line = line.trim();
if (line.length == 0)
return 0;
let colon = line.indexOf(":");
if (colon == -1)
return 0;
entry[0] = line.substr(0, colon).trim();
for (let i = 1, lastMatch = colon + 1; ; i++) {
let comma = line.indexOf(",", lastMatch);
if (comma == -1) {
entry[i] = line.substr(lastMatch).trim();
return i;
}
entry[i] = line.substr(lastMatch, comma - lastMatch).trim();
lastMatch = comma + 1;
if (i == 4)
return 4;
}
}
};
var TextureAtlasPage = class {
name;
minFilter = 9728 /* Nearest */;
magFilter = 9728 /* Nearest */;
uWrap = 33071 /* ClampToEdge */;
vWrap = 33071 /* ClampToEdge */;
texture = null;
width = 0;
height = 0;
pma = false;
regions = new Array();
constructor(name) {
this.name = name;
}
setTexture(texture) {
this.texture = texture;
texture.setFilters(this.minFilter, this.magFilter);
texture.setWraps(this.uWrap, this.vWrap);
for (let region of this.regions)
region.texture = texture;
}
};
var TextureAtlasRegion = class extends TextureRegion {
page;
name;
x = 0;
y = 0;
offsetX = 0;
offsetY = 0;
originalWidth = 0;
originalHeight = 0;
index = 0;
degrees = 0;
names = null;
values = null;
constructor(page, name) {
super();
this.page = page;
this.name = name;
page.regions.push(this);
}
};
// spine-core/src/attachments/MeshAttachment.ts
var MeshAttachment = class extends VertexAttachment {
region = null;
/** The name of the texture region for this attachment. */
path;
/** The UV pair for each vertex, normalized within the texture region. */
regionUVs = [];
/** The UV pair for each vertex, normalized within the entire texture.
*
* See {@link #updateUVs}. */
uvs = [];
/** Triplets of vertex indices which describe the mesh's triangulation. */
triangles = [];
/** The color to tint the mesh. */
color = new Color(1, 1, 1, 1);
/** The width of the mesh's image. Available only when nonessential data was exported. */
width = 0;
/** The height of the mesh's image. Available only when nonessential data was exported. */
height = 0;
/** The number of entries at the beginning of {@link #vertices} that make up the mesh hull. */
hullLength = 0;
/** Vertex index pairs describing edges for controling triangulation. Mesh triangles will never cross edges. Only available if
* nonessential data was exported. Triangulation is not performed at runtime. */
edges = [];
parentMesh = null;
sequence = null;
tempColor = new Color(0, 0, 0, 0);
constructor(name, path) {
super(name);
this.path = path;
}
/** Calculates {@link #uvs} using the {@link #regionUVs} and region. Must be called if the region, the region's properties, or
* the {@link #regionUVs} are changed. */
updateRegion() {
if (!this.region)
throw new Error("Region not set.");
let regionUVs = this.regionUVs;
if (!this.uvs || this.uvs.length != regionUVs.length)
this.uvs = Utils.newFloatArray(regionUVs.length);
let uvs = this.uvs;
let n = this.uvs.length;
let u = this.region.u, v = this.region.v, width = 0, height = 0;
if (this.region instanceof TextureAtlasRegion) {
let region = this.region, page = region.page;
let textureWidth = page.width, textureHeight = page.height;
switch (region.degrees) {
case 90:
u -= (region.originalHeight - region.offsetY - region.height) / textureWidth;
v -= (region.originalWidth - region.offsetX - region.width) / textureHeight;
width = region.originalHeight / textureWidth;
height = region.originalWidth / textureHeight;
for (let i = 0; i < n; i += 2) {
uvs[i] = u + regionUVs[i + 1] * width;
uvs[i + 1] = v + (1 - regionUVs[i]) * height;
}
return;
case 180:
u -= (region.originalWidth - region.offsetX - region.width) / textureWidth;
v -= region.offsetY / textureHeight;
width = region.originalWidth / textureWidth;
height = region.originalHeight / textureHeight;
for (let i = 0; i < n; i += 2) {
uvs[i] = u + (1 - regionUVs[i]) * width;
uvs[i + 1] = v + (1 - regionUVs[i + 1]) * height;
}
return;
case 270:
u -= region.offsetY / textureWidth;
v -= region.offsetX / textureHeight;
width = region.originalHeight / textureWidth;
height = region.originalWidth / textureHeight;
for (let i = 0; i < n; i += 2) {
uvs[i] = u + (1 - regionUVs[i + 1]) * width;
uvs[i + 1] = v + regionUVs[i] * height;
}
return;
}
u -= region.offsetX / textureWidth;
v -= (region.originalHeight - region.offsetY - region.height) / textureHeight;
width = region.originalWidth / textureWidth;
height = region.originalHeight / textureHeight;
} else if (!this.region) {
u = v = 0;
width = height = 1;
} else {
width = this.region.u2 - u;
height = this.region.v2 - v;
}
for (let i = 0; i < n; i += 2) {
uvs[i] = u + regionUVs[i] * width;
uvs[i + 1] = v + regionUVs[i + 1] * height;
}
}
/** The parent mesh if this is a linked mesh, else null. A linked mesh shares the {@link #bones}, {@link #vertices},
* {@link #regionUVs}, {@link #triangles}, {@link #hullLength}, {@link #edges}, {@link #width}, and {@link #height} with the
* parent mesh, but may have a different {@link #name} or {@link #path} (and therefore a different texture). */
getParentMesh() {
return this.parentMesh;
}
/** @param parentMesh May be null. */
setParentMesh(parentMesh) {
this.parentMesh = parentMesh;
if (parentMesh) {
this.bones = parentMesh.bones;
this.vertices = parentMesh.vertices;
this.worldVerticesLength = parentMesh.worldVerticesLength;
this.regionUVs = parentMesh.regionUVs;
this.triangles = parentMesh.triangles;
this.hullLength = parentMesh.hullLength;
this.worldVerticesLength = parentMesh.worldVerticesLength;
}
}
copy() {
if (this.parentMesh)
return this.newLinkedMesh();
let copy = new MeshAttachment(this.name, this.path);
copy.region = this.region;
copy.color.setFromColor(this.color);
this.copyTo(copy);
copy.regionUVs = new Array(this.regionUVs.length);
Utils.arrayCopy(this.regionUVs, 0, copy.regionUVs, 0, this.regionUVs.length);
copy.uvs = new Array(this.uvs.length);
Utils.arrayCopy(this.uvs, 0, copy.uvs, 0, this.uvs.length);
copy.triangles = new Array(this.triangles.length);
Utils.arrayCopy(this.triangles, 0, copy.triangles, 0, this.triangles.length);
copy.hullLength = this.hullLength;
copy.sequence = this.sequence != null ? this.sequence.copy() : null;
if (this.edges) {
copy.edges = new Array(this.edges.length);
Utils.arrayCopy(this.edges, 0, copy.edges, 0, this.edges.length);
}
copy.width = this.width;
copy.height = this.height;
return copy;
}
computeWorldVertices(slot, start, count, worldVertices2, offset, stride) {
if (this.sequence != null)
this.sequence.apply(slot, this);
super.computeWorldVertices(slot, start, count, worldVertices2, offset, stride);
}
/** Returns a new mesh with the {@link #parentMesh} set to this mesh's parent mesh, if any, else to this mesh. **/
newLinkedMesh() {
let copy = new MeshAttachment(this.name, this.path);
copy.region = this.region;
copy.color.setFromColor(this.color);
copy.timelineAttachment = this.timelineAttachment;
copy.setParentMesh(this.parentMesh ? this.parentMesh : this);
if (copy.region != null)
copy.updateRegion();
return copy;
}
};
// spine-core/src/attachments/PathAttachment.ts
var PathAttachment = class extends VertexAttachment {
/** The lengths along the path in the setup pose from the start of the path to the end of each Bezier curve. */
lengths = [];
/** If true, the start and end knots are connected. */
closed = false;
/** If true, additional calculations are performed to make calculating positions along the path more accurate. If false, fewer
* calculations are performed but calculating positions along the path is less accurate. */
constantSpeed = false;
/** The color of the path as it was in Spine. Available only when nonessential data was exported. Paths are not usually
* rendered at runtime. */
color = new Color(1, 1, 1, 1);
constructor(name) {
super(name);
}
copy() {
let copy = new PathAttachment(this.name);
this.copyTo(copy);
copy.lengths = new Array(this.lengths.length);
Utils.arrayCopy(this.lengths, 0, copy.lengths, 0, this.lengths.length);
copy.closed = closed;
copy.constantSpeed = this.constantSpeed;
copy.color.setFromColor(this.color);
return copy;
}
};
// spine-core/src/attachments/PointAttachment.ts
var PointAttachment = class extends VertexAttachment {
x = 0;
y = 0;
rotation = 0;
/** The color of the point attachment as it was in Spine. Available only when nonessential data was exported. Point attachments
* are not usually rendered at runtime. */
color = new Color(0.38, 0.94, 0, 1);
constructor(name) {
super(name);
}
computeWorldPosition(bone, point) {
point.x = this.x * bone.a + this.y * bone.b + bone.worldX;
point.y = this.x * bone.c + this.y * bone.d + bone.worldY;
return point;
}
computeWorldRotation(bone) {
const r = this.rotation * MathUtils.degRad, cos = Math.cos(r), sin = Math.sin(r);
const x = cos * bone.a + sin * bone.b;
const y = cos * bone.c + sin * bone.d;
return MathUtils.atan2Deg(y, x);
}
copy() {
let copy = new PointAttachment(this.name);
copy.x = this.x;
copy.y = this.y;
copy.rotation = this.rotation;
copy.color.setFromColor(this.color);
return copy;
}
};
// spine-core/src/attachments/RegionAttachment.ts
var _RegionAttachment = class extends Attachment {
/** The local x translation. */
x = 0;
/** The local y translation. */
y = 0;
/** The local scaleX. */
scaleX = 1;
/** The local scaleY. */
scaleY = 1;
/** The local rotation. */
rotation = 0;
/** The width of the region attachment in Spine. */
width = 0;
/** The height of the region attachment in Spine. */
height = 0;
/** The color to tint the region attachment. */
color = new Color(1, 1, 1, 1);
/** The name of the texture region for this attachment. */
path;
region = null;
sequence = null;
/** For each of the 4 vertices, a pair of <code>x,y</code> values that is the local position of the vertex.
*
* See {@link #updateOffset()}. */
offset = Utils.newFloatArray(8);
uvs = Utils.newFloatArray(8);
tempColor = new Color(1, 1, 1, 1);
constructor(name, path) {
super(name);
this.path = path;
}
/** Calculates the {@link #offset} using the region settings. Must be called after changing region settings. */
updateRegion() {
if (!this.region)
throw new Error("Region not set.");
let region = this.region;
let uvs = this.uvs;
if (region == null) {
uvs[0] = 0;
uvs[1] = 0;
uvs[2] = 0;
uvs[3] = 1;
uvs[4] = 1;
uvs[5] = 1;
uvs[6] = 1;
uvs[7] = 0;
return;
}
let regionScaleX = this.width / this.region.originalWidth * this.scaleX;
let regionScaleY = this.height / this.region.originalHeight * this.scaleY;
let localX = -this.width / 2 * this.scaleX + this.region.offsetX * regionScaleX;
let localY = -this.height / 2 * this.scaleY + this.region.offsetY * regionScaleY;
let localX2 = localX + this.region.width * regionScaleX;
let localY2 = localY + this.region.height * regionScaleY;
let radians = this.rotation * MathUtils.degRad;
let cos = Math.cos(radians);
let sin = Math.sin(radians);
let x = this.x, y = this.y;
let localXCos = localX * cos + x;
let localXSin = localX * sin;
let localYCos = localY * cos + y;
let localYSin = localY * sin;
let localX2Cos = localX2 * cos + x;
let localX2Sin = localX2 * sin;
let localY2Cos = localY2 * cos + y;
let localY2Sin = localY2 * sin;
let offset = this.offset;
offset[0] = localXCos - localYSin;
offset[1] = localYCos + localXSin;
offset[2] = localXCos - localY2Sin;
offset[3] = localY2Cos + localXSin;
offset[4] = localX2Cos - localY2Sin;
offset[5] = localY2Cos + localX2Sin;
offset[6] = localX2Cos - localYSin;
offset[7] = localYCos + localX2Sin;
if (region.degrees == 90) {
uvs[0] = region.u2;
uvs[1] = region.v2;
uvs[2] = region.u;
uvs[3] = region.v2;
uvs[4] = region.u;
uvs[5] = region.v;
uvs[6] = region.u2;
uvs[7] = region.v;
} else {
uvs[0] = region.u;
uvs[1] = region.v2;
uvs[2] = region.u;
uvs[3] = region.v;
uvs[4] = region.u2;
uvs[5] = region.v;
uvs[6] = region.u2;
uvs[7] = region.v2;
}
}
/** Transforms the attachment's four vertices to world coordinates. If the attachment has a {@link #sequence}, the region may
* be changed.
* <p>
* See <a href="http://esotericsoftware.com/spine-runtime-skeletons#World-transforms">World transforms</a> in the Spine
* Runtimes Guide.
* @param worldVertices The output world vertices. Must have a length >= <code>offset</code> + 8.
* @param offset The <code>worldVertices</code> index to begin writing values.
* @param stride The number of <code>worldVertices</code> entries between the value pairs written. */
computeWorldVertices(slot, worldVertices2, offset, stride) {
if (this.sequence != null)
this.sequence.apply(slot, this);
let bone = slot.bone;
let vertexOffset = this.offset;
let x = bone.worldX, y = bone.worldY;
let a = bone.a, b = bone.b, c = bone.c, d = bone.d;
let offsetX = 0, offsetY = 0;
offsetX = vertexOffset[0];
offsetY = vertexOffset[1];
worldVertices2[offset] = offsetX * a + offsetY * b + x;
worldVertices2[offset + 1] = offsetX * c + offsetY * d + y;
offset += stride;
offsetX = vertexOffset[2];
offsetY = vertexOffset[3];
worldVertices2[offset] = offsetX * a + offsetY * b + x;
worldVertices2[offset + 1] = offsetX * c + offsetY * d + y;
offset += stride;
offsetX = vertexOffset[4];
offsetY = vertexOffset[5];
worldVertices2[offset] = offsetX * a + offsetY * b + x;
worldVertices2[offset + 1] = offsetX * c + offsetY * d + y;
offset += stride;
offsetX = vertexOffset[6];
offsetY = vertexOffset[7];
worldVertices2[offset] = offsetX * a + offsetY * b + x;
worldVertices2[offset + 1] = offsetX * c + offsetY * d + y;
}
copy() {
let copy = new _RegionAttachment(this.name, this.path);
copy.region = this.region;
copy.x = this.x;
copy.y = this.y;
copy.scaleX = this.scaleX;
copy.scaleY = this.scaleY;
copy.rotation = this.rotation;
copy.width = this.width;
copy.height = this.height;
Utils.arrayCopy(this.uvs, 0, copy.uvs, 0, 8);
Utils.arrayCopy(this.offset, 0, copy.offset, 0, 8);
copy.color.setFromColor(this.color);
copy.sequence = this.sequence != null ? this.sequence.copy() : null;
return copy;
}
};
var RegionAttachment = _RegionAttachment;
__publicField(RegionAttachment, "X1", 0);
__publicField(RegionAttachment, "Y1", 1);
__publicField(RegionAttachment, "C1R", 2);
__publicField(RegionAttachment, "C1G", 3);
__publicField(RegionAttachment, "C1B", 4);
__publicField(RegionAttachment, "C1A", 5);
__publicField(RegionAttachment, "U1", 6);
__publicField(RegionAttachment, "V1", 7);
__publicField(RegionAttachment, "X2", 8);
__publicField(RegionAttachment, "Y2", 9);
__publicField(RegionAttachment, "C2R", 10);
__publicField(RegionAttachment, "C2G", 11);
__publicField(RegionAttachment, "C2B", 12);
__publicField(RegionAttachment, "C2A", 13);
__publicField(RegionAttachment, "U2", 14);
__publicField(RegionAttachment, "V2", 15);
__publicField(RegionAttachment, "X3", 16);
__publicField(RegionAttachment, "Y3", 17);
__publicField(RegionAttachment, "C3R", 18);
__publicField(RegionAttachment, "C3G", 19);
__publicField(RegionAttachment, "C3B", 20);
__publicField(RegionAttachment, "C3A", 21);
__publicField(RegionAttachment, "U3", 22);
__publicField(RegionAttachment, "V3", 23);
__publicField(RegionAttachment, "X4", 24);
__publicField(RegionAttachment, "Y4", 25);
__publicField(RegionAttachment, "C4R", 26);
__publicField(RegionAttachment, "C4G", 27);
__publicField(RegionAttachment, "C4B", 28);
__publicField(RegionAttachment, "C4A", 29);
__publicField(RegionAttachment, "U4", 30);
__publicField(RegionAttachment, "V4", 31);
// spine-core/src/AtlasAttachmentLoader.ts
var AtlasAttachmentLoader = class {
atlas;
constructor(atlas) {
this.atlas = atlas;
}
loadSequence(name, basePath, sequence) {
let regions = sequence.regions;
for (let i = 0, n = regions.length; i < n; i++) {
let path = sequence.getPath(basePath, i);
let region = this.atlas.findRegion(path);
if (region == null)
throw new Error("Region not found in atlas: " + path + " (sequence: " + name + ")");
regions[i] = region;
}
}
newRegionAttachment(skin, name, path, sequence) {
let attachment = new RegionAttachment(name, path);
if (sequence != null) {
this.loadSequence(name, path, sequence);
} else {
let region = this.atlas.findRegion(path);
if (!region)
throw new Error("Region not found in atlas: " + path + " (region attachment: " + name + ")");
attachment.region = region;
}
return attachment;
}
newMeshAttachment(skin, name, path, sequence) {
let attachment = new MeshAttachment(name, path);
if (sequence != null) {
this.loadSequence(name, path, sequence);
} else {
let region = this.atlas.findRegion(path);
if (!region)
throw new Error("Region not found in atlas: " + path + " (mesh attachment: " + name + ")");
attachment.region = region;
}
return attachment;
}
newBoundingBoxAttachment(skin, name) {
return new BoundingBoxAttachment(name);
}
newPathAttachment(skin, name) {
return new PathAttachment(name);
}
newPointAttachment(skin, name) {
return new PointAttachment(name);
}
newClippingAttachment(skin, name) {
return new ClippingAttachment(name);
}
};
// spine-core/src/BoneData.ts
var BoneData = class {
/** The index of the bone in {@link Skeleton#getBones()}. */
index = 0;
/** The name of the bone, which is unique across all bones in the skeleton. */
name;
/** @returns May be null. */
parent = null;
/** The bone's length. */
length = 0;
/** The local x translation. */
x = 0;
/** The local y translation. */
y = 0;
/** The local rotation in degrees, counter clockwise. */
rotation = 0;
/** The local scaleX. */
scaleX = 1;
/** The local scaleY. */
scaleY = 1;
/** The local shearX. */
shearX = 0;
/** The local shearX. */
shearY = 0;
/** The transform mode for how parent world transforms affect this bone. */
inherit = Inherit.Normal;
/** When true, {@link Skeleton#updateWorldTransform()} only updates this bone if the {@link Skeleton#skin} contains this
* bone.
* @see Skin#bones */
skinRequired = false;
/** The color of the bone as it was in Spine. Available only when nonessential data was exported. Bones are not usually
* rendered at runtime. */
color = new Color();
/** The bone icon as it was in Spine, or null if nonessential data was not exported. */
icon;
/** False if the bone was hidden in Spine and nonessential data was exported. Does not affect runtime rendering. */
visible = false;
constructor(index, name, parent) {
if (index < 0)
throw new Error("index must be >= 0.");
if (!name)
throw new Error("name cannot be null.");
this.index = index;
this.name = name;
this.parent = parent;
}
};
var Inherit = /* @__PURE__ */ ((Inherit2) => {
Inherit2[Inherit2["Normal"] = 0] = "Normal";
Inherit2[Inherit2["OnlyTranslation"] = 1] = "OnlyTranslation";
Inherit2[Inherit2["NoRotationOrReflection"] = 2] = "NoRotationOrReflection";
Inherit2[Inherit2["NoScale"] = 3] = "NoScale";
Inherit2[Inherit2["NoScaleOrReflection"] = 4] = "NoScaleOrReflection";
return Inherit2;
})(Inherit || {});
// spine-core/src/Bone.ts
var Bone = class {
/** The bone's setup pose data. */
data;
/** The skeleton this bone belongs to. */
skeleton;
/** The parent bone, or null if this is the root bone. */
parent = null;
/** The immediate children of this bone. */
children = new Array();
/** The local x translation. */
x = 0;
/** The local y translation. */
y = 0;
/** The local rotation in degrees, counter clockwise. */
rotation = 0;
/** The local scaleX. */
scaleX = 0;
/** The local scaleY. */
scaleY = 0;
/** The local shearX. */
shearX = 0;
/** The local shearY. */
shearY = 0;
/** The applied local x translation. */
ax = 0;
/** The applied local y translation. */
ay = 0;
/** The applied local rotation in degrees, counter clockwise. */
arotation = 0;
/** The applied local scaleX. */
ascaleX = 0;
/** The applied local scaleY. */
ascaleY = 0;
/** The applied local shearX. */
ashearX = 0;
/** The applied local shearY. */
ashearY = 0;
/** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */
a = 0;
/** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */
b = 0;
/** Part of the world transform matrix for the X axis. If changed, {@link #updateAppliedTransform()} should be called. */
c = 0;
/** Part of the world transform matrix for the Y axis. If changed, {@link #updateAppliedTransform()} should be called. */
d = 0;
/** The world X position. If changed, {@link #updateAppliedTransform()} should be called. */
worldY = 0;
/** The world Y position. If changed, {@link #updateAppliedTransform()} should be called. */
worldX = 0;
inherit = 0 /* Normal */;
sorted = false;
active = false;
/** @param parent May be null. */
constructor(data, skeleton, parent) {
if (!data)
throw new Error("data cannot be null.");
if (!skeleton)
throw new Error("skeleton cannot be null.");
this.data = data;
this.skeleton = skeleton;
this.parent = parent;
this.setToSetupPose();
}
/** Returns false when the bone has not been computed because {@link BoneData#skinRequired} is true and the
* {@link Skeleton#skin active skin} does not {@link Skin#bones contain} this bone. */
isActive() {
return this.active;
}
/** Computes the world transform using the parent bone and this bone's local applied transform. */
update(physics) {
this.updateWorldTransformWith(this.ax, this.ay, this.arotation, this.ascaleX, this.ascaleY, this.ashearX, this.ashearY);
}
/** Computes the world transform using the parent bone and this bone's local transform.
*
* See {@link #updateWorldTransformWith()}. */
updateWorldTransform() {
this.updateWorldTransformWith(this.x, this.y, this.rotation, this.scaleX, this.scaleY, this.shearX, this.shearY);
}
/** Computes the world transform using the parent bone and the specified local transform. The applied transform is set to the
* specified local transform. Child bones are not updated.
*
* See [World transforms](http://esotericsoftware.com/spine-runtime-skeletons#World-transforms) in the Spine
* Runtimes Guide. */
updateWorldTransformWith(x, y, rotation, scaleX, scaleY, shearX, shearY) {
this.ax = x;
this.ay = y;
this.arotation = rotation;
this.ascaleX = scaleX;
this.ascaleY = scaleY;
this.ashearX = shearX;
this.ashearY = shearY;
let parent = this.parent;
if (!parent) {
let skeleton = this.skeleton;
const sx = skeleton.scaleX, sy = skeleton.scaleY;
const rx = (rotation + shearX) * MathUtils.degRad;
const ry = (rotation + 90 + shearY) * MathUtils.degRad;
this.a = Math.cos(rx) * scaleX * sx;
this.b = Math.cos(ry) * scaleY * sx;
this.c = Math.sin(rx) * scaleX * sy;
this.d = Math.sin(ry) * scaleY * sy;
this.worldX = x * sx + skeleton.x;
this.worldY = y * sy + skeleton.y;
return;
}
let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
this.worldX = pa * x + pb * y + parent.worldX;
this.worldY = pc * x + pd * y + parent.worldY;
switch (this.inherit) {
case 0 /* Normal */: {
const rx = (rotation + shearX) * MathUtils.degRad;
const ry = (rotation + 90 + shearY) * MathUtils.degRad;
const la = Math.cos(rx) * scaleX;
const lb = Math.cos(ry) * scaleY;
const lc = Math.sin(rx) * scaleX;
const ld = Math.sin(ry) * scaleY;
this.a = pa * la + pb * lc;
this.b = pa * lb + pb * ld;
this.c = pc * la + pd * lc;
this.d = pc * lb + pd * ld;
return;
}
case 1 /* OnlyTranslation */: {
const rx = (rotation + shearX) * MathUtils.degRad;
const ry = (rotation + 90 + shearY) * MathUtils.degRad;
this.a = Math.cos(rx) * scaleX;
this.b = Math.cos(ry) * scaleY;
this.c = Math.sin(rx) * scaleX;
this.d = Math.sin(ry) * scaleY;
break;
}
case 2 /* NoRotationOrReflection */: {
let sx = 1 / this.skeleton.scaleX, sy = 1 / this.skeleton.scaleY;
pa *= sx;
pc *= sy;
let s = pa * pa + pc * pc;
let prx = 0;
if (s > 1e-4) {
s = Math.abs(pa * pd * sy - pb * sx * pc) / s;
pb = pc * s;
pd = pa * s;
prx = Math.atan2(pc, pa) * MathUtils.radDeg;
} else {
pa = 0;
pc = 0;
prx = 90 - Math.atan2(pd, pb) * MathUtils.radDeg;
}
const rx = (rotation + shearX - prx) * MathUtils.degRad;
const ry = (rotation + shearY - prx + 90) * MathUtils.degRad;
const la = Math.cos(rx) * scaleX;
const lb = Math.cos(ry) * scaleY;
const lc = Math.sin(rx) * scaleX;
const ld = Math.sin(ry) * scaleY;
this.a = pa * la - pb * lc;
this.b = pa * lb - pb * ld;
this.c = pc * la + pd * lc;
this.d = pc * lb + pd * ld;
break;
}
case 3 /* NoScale */:
case 4 /* NoScaleOrReflection */: {
rotation *= MathUtils.degRad;
const cos = Math.cos(rotation), sin = Math.sin(rotation);
let za = (pa * cos + pb * sin) / this.skeleton.scaleX;
let zc = (pc * cos + pd * sin) / this.skeleton.scaleY;
let s = Math.sqrt(za * za + zc * zc);
if (s > 1e-5)
s = 1 / s;
za *= s;
zc *= s;
s = Math.sqrt(za * za + zc * zc);
if (this.inherit == 3 /* NoScale */ && pa * pd - pb * pc < 0 != (this.skeleton.scaleX < 0 != this.skeleton.scaleY < 0))
s = -s;
rotation = Math.PI / 2 + Math.atan2(zc, za);
const zb = Math.cos(rotation) * s;
const zd = Math.sin(rotation) * s;
shearX *= MathUtils.degRad;
shearY = (90 + shearY) * MathUtils.degRad;
const la = Math.cos(shearX) * scaleX;
const lb = Math.cos(shearY) * scaleY;
const lc = Math.sin(shearX) * scaleX;
const ld = Math.sin(shearY) * scaleY;
this.a = za * la + zb * lc;
this.b = za * lb + zb * ld;
this.c = zc * la + zd * lc;
this.d = zc * lb + zd * ld;
break;
}
}
this.a *= this.skeleton.scaleX;
this.b *= this.skeleton.scaleX;
this.c *= this.skeleton.scaleY;
this.d *= this.skeleton.scaleY;
}
/** Sets this bone's local transform to the setup pose. */
setToSetupPose() {
let data = this.data;
this.x = data.x;
this.y = data.y;
this.rotation = data.rotation;
this.scaleX = data.scaleX;
this.scaleY = data.scaleY;
this.shearX = data.shearX;
this.shearY = data.shearY;
this.inherit = data.inherit;
}
/** Computes the applied transform values from the world transform.
*
* If the world transform is modified (by a constraint, {@link #rotateWorld(float)}, etc) then this method should be called so
* the applied transform matches the world transform. The applied transform may be needed by other code (eg to apply other
* constraints).
*
* Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. The applied transform after
* calling this method is equivalent to the local transform used to compute the world transform, but may not be identical. */
updateAppliedTransform() {
let parent = this.parent;
if (!parent) {
this.ax = this.worldX - this.skeleton.x;
this.ay = this.worldY - this.skeleton.y;
this.arotation = Math.atan2(this.c, this.a) * MathUtils.radDeg;
this.ascaleX = Math.sqrt(this.a * this.a + this.c * this.c);
this.ascaleY = Math.sqrt(this.b * this.b + this.d * this.d);
this.ashearX = 0;
this.ashearY = Math.atan2(this.a * this.b + this.c * this.d, this.a * this.d - this.b * this.c) * MathUtils.radDeg;
return;
}
let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
let pid = 1 / (pa * pd - pb * pc);
let ia = pd * pid, ib = pb * pid, ic = pc * pid, id = pa * pid;
let dx = this.worldX - parent.worldX, dy = this.worldY - parent.worldY;
this.ax = dx * ia - dy * ib;
this.ay = dy * id - dx * ic;
let ra, rb, rc, rd;
if (this.inherit == 1 /* OnlyTranslation */) {
ra = this.a;
rb = this.b;
rc = this.c;
rd = this.d;
} else {
switch (this.inherit) {
case 2 /* NoRotationOrReflection */: {
let s2 = Math.abs(pa * pd - pb * pc) / (pa * pa + pc * pc);
pb = -pc * this.skeleton.scaleX * s2 / this.skeleton.scaleY;
pd = pa * this.skeleton.scaleY * s2 / this.skeleton.scaleX;
pid = 1 / (pa * pd - pb * pc);
ia = pd * pid;
ib = pb * pid;
break;
}
case 3 /* NoScale */:
case 4 /* NoScaleOrReflection */:
let cos = MathUtils.cosDeg(this.rotation), sin = MathUtils.sinDeg(this.rotation);
pa = (pa * cos + pb * sin) / this.skeleton.scaleX;
pc = (pc * cos + pd * sin) / this.skeleton.scaleY;
let s = Math.sqrt(pa * pa + pc * pc);
if (s > 1e-5)
s = 1 / s;
pa *= s;
pc *= s;
s = Math.sqrt(pa * pa + pc * pc);
if (this.inherit == 3 /* NoScale */ && pid < 0 != (this.skeleton.scaleX < 0 != this.skeleton.scaleY < 0))
s = -s;
let r = MathUtils.PI / 2 + Math.atan2(pc, pa);
pb = Math.cos(r) * s;
pd = Math.sin(r) * s;
pid = 1 / (pa * pd - pb * pc);
ia = pd * pid;
ib = pb * pid;
ic = pc * pid;
id = pa * pid;
}
ra = ia * this.a - ib * this.c;
rb = ia * this.b - ib * this.d;
rc = id * this.c - ic * this.a;
rd = id * this.d - ic * this.b;
}
this.ashearX = 0;
this.ascaleX = Math.sqrt(ra * ra + rc * rc);
if (this.ascaleX > 1e-4) {
let det = ra * rd - rb * rc;
this.ascaleY = det / this.ascaleX;
this.ashearY = -Math.atan2(ra * rb + rc * rd, det) * MathUtils.radDeg;
this.arotation = Math.atan2(rc, ra) * MathUtils.radDeg;
} else {
this.ascaleX = 0;
this.ascaleY = Math.sqrt(rb * rb + rd * rd);
this.ashearY = 0;
this.arotation = 90 - Math.atan2(rd, rb) * MathUtils.radDeg;
}
}
/** The world rotation for the X axis, calculated using {@link #a} and {@link #c}. */
getWorldRotationX() {
return Math.atan2(this.c, this.a) * MathUtils.radDeg;
}
/** The world rotation for the Y axis, calculated using {@link #b} and {@link #d}. */
getWorldRotationY() {
return Math.atan2(this.d, this.b) * MathUtils.radDeg;
}
/** The magnitude (always positive) of the world scale X, calculated using {@link #a} and {@link #c}. */
getWorldScaleX() {
return Math.sqrt(this.a * this.a + this.c * this.c);
}
/** The magnitude (always positive) of the world scale Y, calculated using {@link #b} and {@link #d}. */
getWorldScaleY() {
return Math.sqrt(this.b * this.b + this.d * this.d);
}
/** Transforms a point from world coordinates to the bone's local coordinates. */
worldToLocal(world) {
let invDet = 1 / (this.a * this.d - this.b * this.c);
let x = world.x - this.worldX, y = world.y - this.worldY;
world.x = x * this.d * invDet - y * this.b * invDet;
world.y = y * this.a * invDet - x * this.c * invDet;
return world;
}
/** Transforms a point from the bone's local coordinates to world coordinates. */
localToWorld(local) {
let x = local.x, y = local.y;
local.x = x * this.a + y * this.b + this.worldX;
local.y = x * this.c + y * this.d + this.worldY;
return local;
}
/** Transforms a point from world coordinates to the parent bone's local coordinates. */
worldToParent(world) {
if (world == null)
throw new Error("world cannot be null.");
return this.parent == null ? world : this.parent.worldToLocal(world);
}
/** Transforms a point from the parent bone's coordinates to world coordinates. */
parentToWorld(world) {
if (world == null)
throw new Error("world cannot be null.");
return this.parent == null ? world : this.parent.localToWorld(world);
}
/** Transforms a world rotation to a local rotation. */
worldToLocalRotation(worldRotation) {
let sin = MathUtils.sinDeg(worldRotation), cos = MathUtils.cosDeg(worldRotation);
return Math.atan2(this.a * sin - this.c * cos, this.d * cos - this.b * sin) * MathUtils.radDeg + this.rotation - this.shearX;
}
/** Transforms a local rotation to a world rotation. */
localToWorldRotation(localRotation) {
localRotation -= this.rotation - this.shearX;
let sin = MathUtils.sinDeg(localRotation), cos = MathUtils.cosDeg(localRotation);
return Math.atan2(cos * this.c + sin * this.d, cos * this.a + sin * this.b) * MathUtils.radDeg;
}
/** Rotates the world transform the specified amount.
* <p>
* After changes are made to the world transform, {@link #updateAppliedTransform()} should be called and
* {@link #update(Physics)} will need to be called on any child bones, recursively. */
rotateWorld(degrees) {
degrees *= MathUtils.degRad;
const sin = Math.sin(degrees), cos = Math.cos(degrees);
const ra = this.a, rb = this.b;
this.a = cos * ra - sin * this.c;
this.b = cos * rb - sin * this.d;
this.c = sin * ra + cos * this.c;
this.d = sin * rb + cos * this.d;
}
};
// spine-core/src/ConstraintData.ts
var ConstraintData = class {
constructor(name, order, skinRequired) {
this.name = name;
this.order = order;
this.skinRequired = skinRequired;
}
};
// spine-core/src/AssetManagerBase.ts
var AssetManagerBase = class {
pathPrefix = "";
textureLoader;
downloader;
assets = {};
errors = {};
toLoad = 0;
loaded = 0;
constructor(textureLoader, pathPrefix = "", downloader = new Downloader()) {
this.textureLoader = textureLoader;
this.pathPrefix = pathPrefix;
this.downloader = downloader;
}
start(path) {
this.toLoad++;
return this.pathPrefix + path;
}
success(callback, path, asset) {
this.toLoad--;
this.loaded++;
this.assets[path] = asset;
if (callback)
callback(path, asset);
}
error(callback, path, message) {
this.toLoad--;
this.loaded++;
this.errors[path] = message;
if (callback)
callback(path, message);
}
loadAll() {
let promise = new Promise((resolve, reject) => {
let check = () => {
if (this.isLoadingComplete()) {
if (this.hasErrors())
reject(this.errors);
else
resolve(this);
return;
}
requestAnimationFrame(check);
};
requestAnimationFrame(check);
});
return promise;
}
setRawDataURI(path, data) {
this.downloader.rawDataUris[this.pathPrefix + path] = data;
}
loadBinary(path, success = () => {
}, error = () => {
}) {
path = this.start(path);
this.downloader.downloadBinary(path, (data) => {
this.success(success, path, data);
}, (status, responseText) => {
this.error(error, path, `Couldn't load binary ${path}: status ${status}, ${responseText}`);
});
}
loadText(path, success = () => {
}, error = () => {
}) {
path = this.start(path);
this.downloader.downloadText(path, (data) => {
this.success(success, path, data);
}, (status, responseText) => {
this.error(error, path, `Couldn't load text ${path}: status ${status}, ${responseText}`);
});
}
loadJson(path, success = () => {
}, error = () => {
}) {
path = this.start(path);
this.downloader.downloadJson(path, (data) => {
this.success(success, path, data);
}, (status, responseText) => {
this.error(error, path, `Couldn't load JSON ${path}: status ${status}, ${responseText}`);
});
}
loadTexture(path, success = () => {
}, error = () => {
}) {
path = this.start(path);
let isBrowser = !!(typeof window !== "undefined" && typeof navigator !== "undefined" && window.document);
let isWebWorker = !isBrowser;
if (isWebWorker) {
fetch(path, { mode: "cors" }).then((response) => {
if (response.ok)
return response.blob();
this.error(error, path, `Couldn't load image: ${path}`);
return null;
}).then((blob) => {
return blob ? createImageBitmap(blob, { premultiplyAlpha: "none", colorSpaceConversion: "none" }) : null;
}).then((bitmap) => {
if (bitmap)
this.success(success, path, this.textureLoader(bitmap));
});
} else {
let image = new Image();
image.crossOrigin = "anonymous";
image.onload = () => {
this.success(success, path, this.textureLoader(image));
};
image.onerror = () => {
this.error(error, path, `Couldn't load image: ${path}`);
};
if (this.downloader.rawDataUris[path])
path = this.downloader.rawDataUris[path];
image.src = path;
}
}
loadTextureAtlas(path, success = () => {
}, error = () => {
}, fileAlias) {
let index = path.lastIndexOf("/");
let parent = index >= 0 ? path.substring(0, index + 1) : "";
path = this.start(path);
this.downloader.downloadText(path, (atlasText) => {
try {
let atlas = new TextureAtlas(atlasText);
let toLoad = atlas.pages.length, abort = false;
for (let page of atlas.pages) {
this.loadTexture(
!fileAlias ? parent + page.name : fileAlias[page.name],
(imagePath, texture) => {
if (!abort) {
page.setTexture(texture);
if (--toLoad == 0)
this.success(success, path, atlas);
}
},
(imagePath, message) => {
if (!abort)
this.error(error, path, `Couldn't load texture atlas ${path} page image: ${imagePath}`);
abort = true;
}
);
}
} catch (e) {
this.error(error, path, `Couldn't parse texture atlas ${path}: ${e.message}`);
}
}, (status, responseText) => {
this.error(error, path, `Couldn't load texture atlas ${path}: status ${status}, ${responseText}`);
});
}
get(path) {
return this.assets[this.pathPrefix + path];
}
require(path) {
path = this.pathPrefix + path;
let asset = this.assets[path];
if (asset)
return asset;
let error = this.errors[path];
throw Error("Asset not found: " + path + (error ? "\n" + error : ""));
}
remove(path) {
path = this.pathPrefix + path;
let asset = this.assets[path];
if (asset.dispose)
asset.dispose();
delete this.assets[path];
return asset;
}
removeAll() {
for (let key in this.assets) {
let asset = this.assets[key];
if (asset.dispose)
asset.dispose();
}
this.assets = {};
}
isLoadingComplete() {
return this.toLoad == 0;
}
getToLoad() {
return this.toLoad;
}
getLoaded() {
return this.loaded;
}
dispose() {
this.removeAll();
}
hasErrors() {
return Object.keys(this.errors).length > 0;
}
getErrors() {
return this.errors;
}
};
var Downloader = class {
callbacks = {};
rawDataUris = {};
dataUriToString(dataUri) {
if (!dataUri.startsWith("data:")) {
throw new Error("Not a data URI.");
}
let base64Idx = dataUri.indexOf("base64,");
if (base64Idx != -1) {
base64Idx += "base64,".length;
return atob(dataUri.substr(base64Idx));
} else {
return dataUri.substr(dataUri.indexOf(",") + 1);
}
}
base64ToUint8Array(base64) {
var binary_string = window.atob(base64);
var len = binary_string.length;
var bytes = new Uint8Array(len);
for (var i = 0; i < len; i++) {
bytes[i] = binary_string.charCodeAt(i);
}
return bytes;
}
dataUriToUint8Array(dataUri) {
if (!dataUri.startsWith("data:")) {
throw new Error("Not a data URI.");
}
let base64Idx = dataUri.indexOf("base64,");
if (base64Idx == -1)
throw new Error("Not a binary data URI.");
base64Idx += "base64,".length;
return this.base64ToUint8Array(dataUri.substr(base64Idx));
}
downloadText(url, success, error) {
if (this.start(url, success, error))
return;
if (this.rawDataUris[url]) {
try {
let dataUri = this.rawDataUris[url];
this.finish(url, 200, this.dataUriToString(dataUri));
} catch (e) {
this.finish(url, 400, JSON.stringify(e));
}
return;
}
let request = new XMLHttpRequest();
request.overrideMimeType("text/html");
request.open("GET", url, true);
let done = () => {
this.finish(url, request.status, request.responseText);
};
request.onload = done;
request.onerror = done;
request.send();
}
downloadJson(url, success, error) {
this.downloadText(url, (data) => {
success(JSON.parse(data));
}, error);
}
downloadBinary(url, success, error) {
if (this.start(url, success, error))
return;
if (this.rawDataUris[url]) {
try {
let dataUri = this.rawDataUris[url];
this.finish(url, 200, this.dataUriToUint8Array(dataUri));
} catch (e) {
this.finish(url, 400, JSON.stringify(e));
}
return;
}
let request = new XMLHttpRequest();
request.open("GET", url, true);
request.responseType = "arraybuffer";
let onerror = () => {
this.finish(url, request.status, request.response);
};
request.onload = () => {
if (request.status == 200 || request.status == 0)
this.finish(url, 200, new Uint8Array(request.response));
else
onerror();
};
request.onerror = onerror;
request.send();
}
start(url, success, error) {
let callbacks = this.callbacks[url];
try {
if (callbacks)
return true;
this.callbacks[url] = callbacks = [];
} finally {
callbacks.push(success, error);
}
}
finish(url, status, data) {
let callbacks = this.callbacks[url];
delete this.callbacks[url];
let args = status == 200 || status == 0 ? [data] : [status, data];
for (let i = args.length - 1, n = callbacks.length; i < n; i += 2)
callbacks[i].apply(null, args);
}
};
// spine-core/src/Event.ts
var Event = class {
data;
intValue = 0;
floatValue = 0;
stringValue = null;
time = 0;
volume = 0;
balance = 0;
constructor(time, data) {
if (!data)
throw new Error("data cannot be null.");
this.time = time;
this.data = data;
}
};
// spine-core/src/EventData.ts
var EventData = class {
name;
intValue = 0;
floatValue = 0;
stringValue = null;
audioPath = null;
volume = 0;
balance = 0;
constructor(name) {
this.name = name;
}
};
// spine-core/src/IkConstraint.ts
var IkConstraint = class {
/** The IK constraint's setup pose data. */
data;
/** The bones that will be modified by this IK constraint. */
bones;
/** The bone that is the IK target. */
target;
/** Controls the bend direction of the IK bones, either 1 or -1. */
bendDirection = 0;
/** When true and only a single bone is being constrained, if the target is too close, the bone is scaled to reach it. */
compress = false;
/** When true, if the target is out of range, the parent bone is scaled to reach it. If more than one bone is being constrained
* and the parent bone has local nonuniform scale, stretch is not applied. */
stretch = false;
/** A percentage (0-1) that controls the mix between the constrained and unconstrained rotations. */
mix = 1;
/** For two bone IK, the distance from the maximum reach of the bones that rotation will slow. */
softness = 0;
active = false;
constructor(data, skeleton) {
if (!data)
throw new Error("data cannot be null.");
if (!skeleton)
throw new Error("skeleton cannot be null.");
this.data = data;
this.bones = new Array();
for (let i = 0; i < data.bones.length; i++) {
let bone = skeleton.findBone(data.bones[i].name);
if (!bone)
throw new Error(`Couldn't find bone ${data.bones[i].name}`);
this.bones.push(bone);
}
let target = skeleton.findBone(data.target.name);
if (!target)
throw new Error(`Couldn't find bone ${data.target.name}`);
this.target = target;
this.mix = data.mix;
this.softness = data.softness;
this.bendDirection = data.bendDirection;
this.compress = data.compress;
this.stretch = data.stretch;
}
isActive() {
return this.active;
}
setToSetupPose() {
const data = this.data;
this.mix = data.mix;
this.softness = data.softness;
this.bendDirection = data.bendDirection;
this.compress = data.compress;
this.stretch = data.stretch;
}
update(physics) {
if (this.mix == 0)
return;
let target = this.target;
let bones = this.bones;
switch (bones.length) {
case 1:
this.apply1(bones[0], target.worldX, target.worldY, this.compress, this.stretch, this.data.uniform, this.mix);
break;
case 2:
this.apply2(bones[0], bones[1], target.worldX, target.worldY, this.bendDirection, this.stretch, this.data.uniform, this.softness, this.mix);
break;
}
}
/** Applies 1 bone IK. The target is specified in the world coordinate system. */
apply1(bone, targetX, targetY, compress, stretch, uniform, alpha) {
let p = bone.parent;
if (!p)
throw new Error("IK bone must have parent.");
let pa = p.a, pb = p.b, pc = p.c, pd = p.d;
let rotationIK = -bone.ashearX - bone.arotation, tx = 0, ty = 0;
switch (bone.inherit) {
case 1 /* OnlyTranslation */:
tx = (targetX - bone.worldX) * MathUtils.signum(bone.skeleton.scaleX);
ty = (targetY - bone.worldY) * MathUtils.signum(bone.skeleton.scaleY);
break;
case 2 /* NoRotationOrReflection */:
let s = Math.abs(pa * pd - pb * pc) / Math.max(1e-4, pa * pa + pc * pc);
let sa = pa / bone.skeleton.scaleX;
let sc = pc / bone.skeleton.scaleY;
pb = -sc * s * bone.skeleton.scaleX;
pd = sa * s * bone.skeleton.scaleY;
rotationIK += Math.atan2(sc, sa) * MathUtils.radDeg;
default:
let x = targetX - p.worldX, y = targetY - p.worldY;
let d = pa * pd - pb * pc;
if (Math.abs(d) <= 1e-4) {
tx = 0;
ty = 0;
} else {
tx = (x * pd - y * pb) / d - bone.ax;
ty = (y * pa - x * pc) / d - bone.ay;
}
}
rotationIK += Math.atan2(ty, tx) * MathUtils.radDeg;
if (bone.ascaleX < 0)
rotationIK += 180;
if (rotationIK > 180)
rotationIK -= 360;
else if (rotationIK < -180)
rotationIK += 360;
let sx = bone.ascaleX, sy = bone.ascaleY;
if (compress || stretch) {
switch (bone.inherit) {
case 3 /* NoScale */:
case 4 /* NoScaleOrReflection */:
tx = targetX - bone.worldX;
ty = targetY - bone.worldY;
}
const b = bone.data.length * sx;
if (b > 1e-4) {
const dd = tx * tx + ty * ty;
if (compress && dd < b * b || stretch && dd > b * b) {
const s = (Math.sqrt(dd) / b - 1) * alpha + 1;
sx *= s;
if (uniform)
sy *= s;
}
}
}
bone.updateWorldTransformWith(
bone.ax,
bone.ay,
bone.arotation + rotationIK * alpha,
sx,
sy,
bone.ashearX,
bone.ashearY
);
}
/** Applies 2 bone IK. The target is specified in the world coordinate system.
* @param child A direct descendant of the parent bone. */
apply2(parent, child, targetX, targetY, bendDir, stretch, uniform, softness, alpha) {
if (parent.inherit != 0 /* Normal */ || child.inherit != 0 /* Normal */)
return;
let px = parent.ax, py = parent.ay, psx = parent.ascaleX, psy = parent.ascaleY, sx = psx, sy = psy, csx = child.ascaleX;
let os1 = 0, os2 = 0, s2 = 0;
if (psx < 0) {
psx = -psx;
os1 = 180;
s2 = -1;
} else {
os1 = 0;
s2 = 1;
}
if (psy < 0) {
psy = -psy;
s2 = -s2;
}
if (csx < 0) {
csx = -csx;
os2 = 180;
} else
os2 = 0;
let cx = child.ax, cy = 0, cwx = 0, cwy = 0, a = parent.a, b = parent.b, c = parent.c, d = parent.d;
let u = Math.abs(psx - psy) <= 1e-4;
if (!u || stretch) {
cy = 0;
cwx = a * cx + parent.worldX;
cwy = c * cx + parent.worldY;
} else {
cy = child.ay;
cwx = a * cx + b * cy + parent.worldX;
cwy = c * cx + d * cy + parent.worldY;
}
let pp = parent.parent;
if (!pp)
throw new Error("IK parent must itself have a parent.");
a = pp.a;
b = pp.b;
c = pp.c;
d = pp.d;
let id = a * d - b * c, x = cwx - pp.worldX, y = cwy - pp.worldY;
id = Math.abs(id) <= 1e-4 ? 0 : 1 / id;
let dx = (x * d - y * b) * id - px, dy = (y * a - x * c) * id - py;
let l1 = Math.sqrt(dx * dx + dy * dy), l2 = child.data.length * csx, a1, a2;
if (l1 < 1e-4) {
this.apply1(parent, targetX, targetY, false, stretch, false, alpha);
child.updateWorldTransformWith(cx, cy, 0, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY);
return;
}
x = targetX - pp.worldX;
y = targetY - pp.worldY;
let tx = (x * d - y * b) * id - px, ty = (y * a - x * c) * id - py;
let dd = tx * tx + ty * ty;
if (softness != 0) {
softness *= psx * (csx + 1) * 0.5;
let td = Math.sqrt(dd), sd = td - l1 - l2 * psx + softness;
if (sd > 0) {
let p = Math.min(1, sd / (softness * 2)) - 1;
p = (sd - softness * (1 - p * p)) / td;
tx -= p * tx;
ty -= p * ty;
dd = tx * tx + ty * ty;
}
}
outer:
if (u) {
l2 *= psx;
let cos = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2);
if (cos < -1) {
cos = -1;
a2 = Math.PI * bendDir;
} else if (cos > 1) {
cos = 1;
a2 = 0;
if (stretch) {
a = (Math.sqrt(dd) / (l1 + l2) - 1) * alpha + 1;
sx *= a;
if (uniform)
sy *= a;
}
} else
a2 = Math.acos(cos) * bendDir;
a = l1 + l2 * cos;
b = l2 * Math.sin(a2);
a1 = Math.atan2(ty * a - tx * b, tx * a + ty * b);
} else {
a = psx * l2;
b = psy * l2;
let aa = a * a, bb = b * b, ta = Math.atan2(ty, tx);
c = bb * l1 * l1 + aa * dd - aa * bb;
let c1 = -2 * bb * l1, c2 = bb - aa;
d = c1 * c1 - 4 * c2 * c;
if (d >= 0) {
let q = Math.sqrt(d);
if (c1 < 0)
q = -q;
q = -(c1 + q) * 0.5;
let r0 = q / c2, r1 = c / q;
let r = Math.abs(r0) < Math.abs(r1) ? r0 : r1;
r0 = dd - r * r;
if (r0 >= 0) {
y = Math.sqrt(r0) * bendDir;
a1 = ta - Math.atan2(y, r);
a2 = Math.atan2(y / psy, (r - l1) / psx);
break outer;
}
}
let minAngle = MathUtils.PI, minX = l1 - a, minDist = minX * minX, minY = 0;
let maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0;
c = -a * l1 / (aa - bb);
if (c >= -1 && c <= 1) {
c = Math.acos(c);
x = a * Math.cos(c) + l1;
y = b * Math.sin(c);
d = x * x + y * y;
if (d < minDist) {
minAngle = c;
minDist = d;
minX = x;
minY = y;
}
if (d > maxDist) {
maxAngle = c;
maxDist = d;
maxX = x;
maxY = y;
}
}
if (dd <= (minDist + maxDist) * 0.5) {
a1 = ta - Math.atan2(minY * bendDir, minX);
a2 = minAngle * bendDir;
} else {
a1 = ta - Math.atan2(maxY * bendDir, maxX);
a2 = maxAngle * bendDir;
}
}
let os = Math.atan2(cy, cx) * s2;
let rotation = parent.arotation;
a1 = (a1 - os) * MathUtils.radDeg + os1 - rotation;
if (a1 > 180)
a1 -= 360;
else if (a1 < -180)
a1 += 360;
parent.updateWorldTransformWith(px, py, rotation + a1 * alpha, sx, sy, 0, 0);
rotation = child.arotation;
a2 = ((a2 + os) * MathUtils.radDeg - child.ashearX) * s2 + os2 - rotation;
if (a2 > 180)
a2 -= 360;
else if (a2 < -180)
a2 += 360;
child.updateWorldTransformWith(cx, cy, rotation + a2 * alpha, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY);
}
};
// spine-core/src/IkConstraintData.ts
var IkConstraintData = class extends ConstraintData {
/** The bones that are constrained by this IK constraint. */
bones = new Array();
/** The bone that is the IK target. */
_target = null;
set target(boneData) {
this._target = boneData;
}
get target() {
if (!this._target)
throw new Error("BoneData not set.");
else
return this._target;
}
/** Controls the bend direction of the IK bones, either 1 or -1. */
bendDirection = 0;
/** When true and only a single bone is being constrained, if the target is too close, the bone is scaled to reach it. */
compress = false;
/** When true, if the target is out of range, the parent bone is scaled to reach it. If more than one bone is being constrained
* and the parent bone has local nonuniform scale, stretch is not applied. */
stretch = false;
/** When true, only a single bone is being constrained, and {@link #getCompress()} or {@link #getStretch()} is used, the bone
* is scaled on both the X and Y axes. */
uniform = false;
/** A percentage (0-1) that controls the mix between the constrained and unconstrained rotations. */
mix = 0;
/** For two bone IK, the distance from the maximum reach of the bones that rotation will slow. */
softness = 0;
constructor(name) {
super(name, 0, false);
}
};
// spine-core/src/PathConstraintData.ts
var PathConstraintData = class extends ConstraintData {
/** The bones that will be modified by this path constraint. */
bones = new Array();
/** The slot whose path attachment will be used to constrained the bones. */
_target = null;
set target(slotData) {
this._target = slotData;
}
get target() {
if (!this._target)
throw new Error("SlotData not set.");
else
return this._target;
}
/** The mode for positioning the first bone on the path. */
positionMode = PositionMode.Fixed;
/** The mode for positioning the bones after the first bone on the path. */
spacingMode = SpacingMode.Fixed;
/** The mode for adjusting the rotation of the bones. */
rotateMode = RotateMode.Chain;
/** An offset added to the constrained bone rotation. */
offsetRotation = 0;
/** The position along the path. */
position = 0;
/** The spacing between bones. */
spacing = 0;
mixRotate = 0;
mixX = 0;
mixY = 0;
constructor(name) {
super(name, 0, false);
}
};
var PositionMode = /* @__PURE__ */ ((PositionMode2) => {
PositionMode2[PositionMode2["Fixed"] = 0] = "Fixed";
PositionMode2[PositionMode2["Percent"] = 1] = "Percent";
return PositionMode2;
})(PositionMode || {});
var SpacingMode = /* @__PURE__ */ ((SpacingMode2) => {
SpacingMode2[SpacingMode2["Length"] = 0] = "Length";
SpacingMode2[SpacingMode2["Fixed"] = 1] = "Fixed";
SpacingMode2[SpacingMode2["Percent"] = 2] = "Percent";
SpacingMode2[SpacingMode2["Proportional"] = 3] = "Proportional";
return SpacingMode2;
})(SpacingMode || {});
var RotateMode = /* @__PURE__ */ ((RotateMode2) => {
RotateMode2[RotateMode2["Tangent"] = 0] = "Tangent";
RotateMode2[RotateMode2["Chain"] = 1] = "Chain";
RotateMode2[RotateMode2["ChainScale"] = 2] = "ChainScale";
return RotateMode2;
})(RotateMode || {});
// spine-core/src/PathConstraint.ts
var _PathConstraint = class {
/** The path constraint's setup pose data. */
data;
/** The bones that will be modified by this path constraint. */
bones;
/** The slot whose path attachment will be used to constrained the bones. */
target;
/** The position along the path. */
position = 0;
/** The spacing between bones. */
spacing = 0;
mixRotate = 0;
mixX = 0;
mixY = 0;
spaces = new Array();
positions = new Array();
world = new Array();
curves = new Array();
lengths = new Array();
segments = new Array();
active = false;
constructor(data, skeleton) {
if (!data)
throw new Error("data cannot be null.");
if (!skeleton)
throw new Error("skeleton cannot be null.");
this.data = data;
this.bones = new Array();
for (let i = 0, n = data.bones.length; i < n; i++) {
let bone = skeleton.findBone(data.bones[i].name);
if (!bone)
throw new Error(`Couldn't find bone ${data.bones[i].name}.`);
this.bones.push(bone);
}
let target = skeleton.findSlot(data.target.name);
if (!target)
throw new Error(`Couldn't find target bone ${data.target.name}`);
this.target = target;
this.position = data.position;
this.spacing = data.spacing;
this.mixRotate = data.mixRotate;
this.mixX = data.mixX;
this.mixY = data.mixY;
}
isActive() {
return this.active;
}
setToSetupPose() {
const data = this.data;
this.position = data.position;
this.spacing = data.spacing;
this.mixRotate = data.mixRotate;
this.mixX = data.mixX;
this.mixY = data.mixY;
}
update(physics) {
let attachment = this.target.getAttachment();
if (!(attachment instanceof PathAttachment))
return;
let mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY;
if (mixRotate == 0 && mixX == 0 && mixY == 0)
return;
let data = this.data;
let tangents = data.rotateMode == 0 /* Tangent */, scale = data.rotateMode == 2 /* ChainScale */;
let bones = this.bones;
let boneCount = bones.length, spacesCount = tangents ? boneCount : boneCount + 1;
let spaces = Utils.setArraySize(this.spaces, spacesCount), lengths = scale ? this.lengths = Utils.setArraySize(this.lengths, boneCount) : [];
let spacing = this.spacing;
switch (data.spacingMode) {
case 2 /* Percent */:
if (scale) {
for (let i = 0, n = spacesCount - 1; i < n; i++) {
let bone = bones[i];
let setupLength = bone.data.length;
let x = setupLength * bone.a, y = setupLength * bone.c;
lengths[i] = Math.sqrt(x * x + y * y);
}
}
Utils.arrayFill(spaces, 1, spacesCount, spacing);
break;
case 3 /* Proportional */:
let sum = 0;
for (let i = 0, n = spacesCount - 1; i < n; ) {
let bone = bones[i];
let setupLength = bone.data.length;
if (setupLength < _PathConstraint.epsilon) {
if (scale)
lengths[i] = 0;
spaces[++i] = spacing;
} else {
let x = setupLength * bone.a, y = setupLength * bone.c;
let length = Math.sqrt(x * x + y * y);
if (scale)
lengths[i] = length;
spaces[++i] = length;
sum += length;
}
}
if (sum > 0) {
sum = spacesCount / sum * spacing;
for (let i = 1; i < spacesCount; i++)
spaces[i] *= sum;
}
break;
default:
let lengthSpacing = data.spacingMode == 0 /* Length */;
for (let i = 0, n = spacesCount - 1; i < n; ) {
let bone = bones[i];
let setupLength = bone.data.length;
if (setupLength < _PathConstraint.epsilon) {
if (scale)
lengths[i] = 0;
spaces[++i] = spacing;
} else {
let x = setupLength * bone.a, y = setupLength * bone.c;
let length = Math.sqrt(x * x + y * y);
if (scale)
lengths[i] = length;
spaces[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength;
}
}
}
let positions = this.computeWorldPositions(attachment, spacesCount, tangents);
let boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation;
let tip = false;
if (offsetRotation == 0)
tip = data.rotateMode == 1 /* Chain */;
else {
tip = false;
let p = this.target.bone;
offsetRotation *= p.a * p.d - p.b * p.c > 0 ? MathUtils.degRad : -MathUtils.degRad;
}
for (let i = 0, p = 3; i < boneCount; i++, p += 3) {
let bone = bones[i];
bone.worldX += (boneX - bone.worldX) * mixX;
bone.worldY += (boneY - bone.worldY) * mixY;
let x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY;
if (scale) {
let length = lengths[i];
if (length != 0) {
let s = (Math.sqrt(dx * dx + dy * dy) / length - 1) * mixRotate + 1;
bone.a *= s;
bone.c *= s;
}
}
boneX = x;
boneY = y;
if (mixRotate > 0) {
let a = bone.a, b = bone.b, c = bone.c, d = bone.d, r = 0, cos = 0, sin = 0;
if (tangents)
r = positions[p - 1];
else if (spaces[i + 1] == 0)
r = positions[p + 2];
else
r = Math.atan2(dy, dx);
r -= Math.atan2(c, a);
if (tip) {
cos = Math.cos(r);
sin = Math.sin(r);
let length = bone.data.length;
boneX += (length * (cos * a - sin * c) - dx) * mixRotate;
boneY += (length * (sin * a + cos * c) - dy) * mixRotate;
} else {
r += offsetRotation;
}
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI)
r += MathUtils.PI2;
r *= mixRotate;
cos = Math.cos(r);
sin = Math.sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
bone.updateAppliedTransform();
}
}
computeWorldPositions(path, spacesCount, tangents) {
let target = this.target;
let position = this.position;
let spaces = this.spaces, out = Utils.setArraySize(this.positions, spacesCount * 3 + 2), world = this.world;
let closed2 = path.closed;
let verticesLength = path.worldVerticesLength, curveCount = verticesLength / 6, prevCurve = _PathConstraint.NONE;
if (!path.constantSpeed) {
let lengths = path.lengths;
curveCount -= closed2 ? 1 : 2;
let pathLength2 = lengths[curveCount];
if (this.data.positionMode == 1 /* Percent */)
position *= pathLength2;
let multiplier2;
switch (this.data.spacingMode) {
case 2 /* Percent */:
multiplier2 = pathLength2;
break;
case 3 /* Proportional */:
multiplier2 = pathLength2 / spacesCount;
break;
default:
multiplier2 = 1;
}
world = Utils.setArraySize(this.world, 8);
for (let i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) {
let space = spaces[i] * multiplier2;
position += space;
let p = position;
if (closed2) {
p %= pathLength2;
if (p < 0)
p += pathLength2;
curve = 0;
} else if (p < 0) {
if (prevCurve != _PathConstraint.BEFORE) {
prevCurve = _PathConstraint.BEFORE;
path.computeWorldVertices(target, 2, 4, world, 0, 2);
}
this.addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength2) {
if (prevCurve != _PathConstraint.AFTER) {
prevCurve = _PathConstraint.AFTER;
path.computeWorldVertices(target, verticesLength - 6, 4, world, 0, 2);
}
this.addAfterPosition(p - pathLength2, world, 0, out, o);
continue;
}
for (; ; curve++) {
let length = lengths[curve];
if (p > length)
continue;
if (curve == 0)
p /= length;
else {
let prev = lengths[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
if (closed2 && curve == curveCount) {
path.computeWorldVertices(target, verticesLength - 4, 4, world, 0, 2);
path.computeWorldVertices(target, 0, 4, world, 4, 2);
} else
path.computeWorldVertices(target, curve * 6 + 2, 8, world, 0, 2);
}
this.addCurvePosition(
p,
world[0],
world[1],
world[2],
world[3],
world[4],
world[5],
world[6],
world[7],
out,
o,
tangents || i > 0 && space == 0
);
}
return out;
}
if (closed2) {
verticesLength += 2;
world = Utils.setArraySize(this.world, verticesLength);
path.computeWorldVertices(target, 2, verticesLength - 4, world, 0, 2);
path.computeWorldVertices(target, 0, 2, world, verticesLength - 4, 2);
world[verticesLength - 2] = world[0];
world[verticesLength - 1] = world[1];
} else {
curveCount--;
verticesLength -= 4;
world = Utils.setArraySize(this.world, verticesLength);
path.computeWorldVertices(target, 2, verticesLength, world, 0, 2);
}
let curves = Utils.setArraySize(this.curves, curveCount);
let pathLength = 0;
let x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0;
let tmpx = 0, tmpy = 0, dddfx = 0, dddfy = 0, ddfx = 0, ddfy = 0, dfx = 0, dfy = 0;
for (let i = 0, w = 2; i < curveCount; i++, w += 6) {
cx1 = world[w];
cy1 = world[w + 1];
cx2 = world[w + 2];
cy2 = world[w + 3];
x2 = world[w + 4];
y2 = world[w + 5];
tmpx = (x1 - cx1 * 2 + cx2) * 0.1875;
tmpy = (y1 - cy1 * 2 + cy2) * 0.1875;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.75 + tmpx + dddfx * 0.16666667;
dfy = (cy1 - y1) * 0.75 + tmpy + dddfy * 0.16666667;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx;
dfy += ddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
pathLength += Math.sqrt(dfx * dfx + dfy * dfy);
curves[i] = pathLength;
x1 = x2;
y1 = y2;
}
if (this.data.positionMode == 1 /* Percent */)
position *= pathLength;
let multiplier;
switch (this.data.spacingMode) {
case 2 /* Percent */:
multiplier = pathLength;
break;
case 3 /* Proportional */:
multiplier = pathLength / spacesCount;
break;
default:
multiplier = 1;
}
let segments = this.segments;
let curveLength = 0;
for (let i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) {
let space = spaces[i] * multiplier;
position += space;
let p = position;
if (closed2) {
p %= pathLength;
if (p < 0)
p += pathLength;
curve = 0;
} else if (p < 0) {
this.addBeforePosition(p, world, 0, out, o);
continue;
} else if (p > pathLength) {
this.addAfterPosition(p - pathLength, world, verticesLength - 4, out, o);
continue;
}
for (; ; curve++) {
let length = curves[curve];
if (p > length)
continue;
if (curve == 0)
p /= length;
else {
let prev = curves[curve - 1];
p = (p - prev) / (length - prev);
}
break;
}
if (curve != prevCurve) {
prevCurve = curve;
let ii = curve * 6;
x1 = world[ii];
y1 = world[ii + 1];
cx1 = world[ii + 2];
cy1 = world[ii + 3];
cx2 = world[ii + 4];
cy2 = world[ii + 5];
x2 = world[ii + 6];
y2 = world[ii + 7];
tmpx = (x1 - cx1 * 2 + cx2) * 0.03;
tmpy = (y1 - cy1 * 2 + cy2) * 0.03;
dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 6e-3;
dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 6e-3;
ddfx = tmpx * 2 + dddfx;
ddfy = tmpy * 2 + dddfy;
dfx = (cx1 - x1) * 0.3 + tmpx + dddfx * 0.16666667;
dfy = (cy1 - y1) * 0.3 + tmpy + dddfy * 0.16666667;
curveLength = Math.sqrt(dfx * dfx + dfy * dfy);
segments[0] = curveLength;
for (ii = 1; ii < 8; ii++) {
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[ii] = curveLength;
}
dfx += ddfx;
dfy += ddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[8] = curveLength;
dfx += ddfx + dddfx;
dfy += ddfy + dddfy;
curveLength += Math.sqrt(dfx * dfx + dfy * dfy);
segments[9] = curveLength;
segment = 0;
}
p *= curveLength;
for (; ; segment++) {
let length = segments[segment];
if (p > length)
continue;
if (segment == 0)
p /= length;
else {
let prev = segments[segment - 1];
p = segment + (p - prev) / (length - prev);
}
break;
}
this.addCurvePosition(p * 0.1, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents || i > 0 && space == 0);
}
return out;
}
addBeforePosition(p, temp, i, out, o) {
let x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = Math.atan2(dy, dx);
out[o] = x1 + p * Math.cos(r);
out[o + 1] = y1 + p * Math.sin(r);
out[o + 2] = r;
}
addAfterPosition(p, temp, i, out, o) {
let x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = Math.atan2(dy, dx);
out[o] = x1 + p * Math.cos(r);
out[o + 1] = y1 + p * Math.sin(r);
out[o + 2] = r;
}
addCurvePosition(p, x1, y1, cx1, cy1, cx2, cy2, x2, y2, out, o, tangents) {
if (p == 0 || isNaN(p)) {
out[o] = x1;
out[o + 1] = y1;
out[o + 2] = Math.atan2(cy1 - y1, cx1 - x1);
return;
}
let tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u;
let ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p;
let x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt;
out[o] = x;
out[o + 1] = y;
if (tangents) {
if (p < 1e-3)
out[o + 2] = Math.atan2(cy1 - y1, cx1 - x1);
else
out[o + 2] = Math.atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt));
}
}
};
var PathConstraint = _PathConstraint;
__publicField(PathConstraint, "NONE", -1);
__publicField(PathConstraint, "BEFORE", -2);
__publicField(PathConstraint, "AFTER", -3);
__publicField(PathConstraint, "epsilon", 1e-5);
// spine-core/src/PhysicsConstraint.ts
var PhysicsConstraint = class {
data;
_bone = null;
/** The bone constrained by this physics constraint. */
set bone(bone) {
this._bone = bone;
}
get bone() {
if (!this._bone)
throw new Error("Bone not set.");
else
return this._bone;
}
inertia = 0;
strength = 0;
damping = 0;
massInverse = 0;
wind = 0;
gravity = 0;
mix = 0;
_reset = true;
ux = 0;
uy = 0;
cx = 0;
cy = 0;
tx = 0;
ty = 0;
xOffset = 0;
xVelocity = 0;
yOffset = 0;
yVelocity = 0;
rotateOffset = 0;
rotateVelocity = 0;
scaleOffset = 0;
scaleVelocity = 0;
active = false;
skeleton;
remaining = 0;
lastTime = 0;
constructor(data, skeleton) {
this.data = data;
this.skeleton = skeleton;
this.bone = skeleton.bones[data.bone.index];
this.inertia = data.inertia;
this.strength = data.strength;
this.damping = data.damping;
this.massInverse = data.massInverse;
this.wind = data.wind;
this.gravity = data.gravity;
this.mix = data.mix;
}
reset() {
this.remaining = 0;
this.lastTime = this.skeleton.time;
this._reset = true;
this.xOffset = 0;
this.xVelocity = 0;
this.yOffset = 0;
this.yVelocity = 0;
this.rotateOffset = 0;
this.rotateVelocity = 0;
this.scaleOffset = 0;
this.scaleVelocity = 0;
}
setToSetupPose() {
const data = this.data;
this.inertia = data.inertia;
this.strength = data.strength;
this.damping = data.damping;
this.massInverse = data.massInverse;
this.wind = data.wind;
this.gravity = data.gravity;
this.mix = data.mix;
}
isActive() {
return this.active;
}
/** Applies the constraint to the constrained bones. */
update(physics) {
const mix = this.mix;
if (mix == 0)
return;
const x = this.data.x > 0, y = this.data.y > 0, rotateOrShearX = this.data.rotate > 0 || this.data.shearX > 0, scaleX = this.data.scaleX > 0;
const bone = this.bone;
const l = bone.data.length;
switch (physics) {
case 0 /* none */:
return;
case 1 /* reset */:
this.reset();
case 2 /* update */:
const skeleton = this.skeleton;
const delta = Math.max(this.skeleton.time - this.lastTime, 0);
this.remaining += delta;
this.lastTime = skeleton.time;
const bx = bone.worldX, by = bone.worldY;
if (this._reset) {
this._reset = false;
this.ux = bx;
this.uy = by;
} else {
let a = this.remaining, i = this.inertia, t = this.data.step, f = this.skeleton.data.referenceScale, d = -1;
let qx = this.data.limit * delta, qy = qx * Math.abs(skeleton.scaleY);
qx *= Math.abs(skeleton.scaleX);
if (x || y) {
if (x) {
const u = (this.ux - bx) * i;
this.xOffset += u > qx ? qx : u < -qx ? -qx : u;
this.ux = bx;
}
if (y) {
const u = (this.uy - by) * i;
this.yOffset += u > qy ? qy : u < -qy ? -qy : u;
this.uy = by;
}
if (a >= t) {
d = Math.pow(this.damping, 60 * t);
const m = this.massInverse * t, e = this.strength, w = this.wind * f * skeleton.scaleX, g = this.gravity * f * skeleton.scaleY;
do {
if (x) {
this.xVelocity += (w - this.xOffset * e) * m;
this.xOffset += this.xVelocity * t;
this.xVelocity *= d;
}
if (y) {
this.yVelocity -= (g + this.yOffset * e) * m;
this.yOffset += this.yVelocity * t;
this.yVelocity *= d;
}
a -= t;
} while (a >= t);
}
if (x)
bone.worldX += this.xOffset * mix * this.data.x;
if (y)
bone.worldY += this.yOffset * mix * this.data.y;
}
if (rotateOrShearX || scaleX) {
let ca = Math.atan2(bone.c, bone.a), c = 0, s = 0, mr = 0;
let dx = this.cx - bone.worldX, dy = this.cy - bone.worldY;
if (dx > qx)
dx = qx;
else if (dx < -qx)
dx = -qx;
if (dy > qy)
dy = qy;
else if (dy < -qy)
dy = -qy;
if (rotateOrShearX) {
mr = (this.data.rotate + this.data.shearX) * mix;
let r = Math.atan2(dy + this.ty, dx + this.tx) - ca - this.rotateOffset * mr;
this.rotateOffset += (r - Math.ceil(r * MathUtils.invPI2 - 0.5) * MathUtils.PI2) * i;
r = this.rotateOffset * mr + ca;
c = Math.cos(r);
s = Math.sin(r);
if (scaleX) {
r = l * bone.getWorldScaleX();
if (r > 0)
this.scaleOffset += (dx * c + dy * s) * i / r;
}
} else {
c = Math.cos(ca);
s = Math.sin(ca);
const r = l * bone.getWorldScaleX();
if (r > 0)
this.scaleOffset += (dx * c + dy * s) * i / r;
}
a = this.remaining;
if (a >= t) {
if (d == -1)
d = Math.pow(this.damping, 60 * t);
const m = this.massInverse * t, e = this.strength, w = this.wind, g = Skeleton.yDown ? -this.gravity : this.gravity, h = l / f;
while (true) {
a -= t;
if (scaleX) {
this.scaleVelocity += (w * c - g * s - this.scaleOffset * e) * m;
this.scaleOffset += this.scaleVelocity * t;
this.scaleVelocity *= d;
}
if (rotateOrShearX) {
this.rotateVelocity -= ((w * s + g * c) * h + this.rotateOffset * e) * m;
this.rotateOffset += this.rotateVelocity * t;
this.rotateVelocity *= d;
if (a < t)
break;
const r = this.rotateOffset * mr + ca;
c = Math.cos(r);
s = Math.sin(r);
} else if (a < t)
break;
}
}
}
this.remaining = a;
}
this.cx = bone.worldX;
this.cy = bone.worldY;
break;
case 3 /* pose */:
if (x)
bone.worldX += this.xOffset * mix * this.data.x;
if (y)
bone.worldY += this.yOffset * mix * this.data.y;
}
if (rotateOrShearX) {
let o = this.rotateOffset * mix, s = 0, c = 0, a = 0;
if (this.data.shearX > 0) {
let r = 0;
if (this.data.rotate > 0) {
r = o * this.data.rotate;
s = Math.sin(r);
c = Math.cos(r);
a = bone.b;
bone.b = c * a - s * bone.d;
bone.d = s * a + c * bone.d;
}
r += o * this.data.shearX;
s = Math.sin(r);
c = Math.cos(r);
a = bone.a;
bone.a = c * a - s * bone.c;
bone.c = s * a + c * bone.c;
} else {
o *= this.data.rotate;
s = Math.sin(o);
c = Math.cos(o);
a = bone.a;
bone.a = c * a - s * bone.c;
bone.c = s * a + c * bone.c;
a = bone.b;
bone.b = c * a - s * bone.d;
bone.d = s * a + c * bone.d;
}
}
if (scaleX) {
const s = 1 + this.scaleOffset * mix * this.data.scaleX;
bone.a *= s;
bone.c *= s;
}
if (physics != 3 /* pose */) {
this.tx = l * bone.a;
this.ty = l * bone.c;
}
bone.updateAppliedTransform();
}
/** Translates the physics constraint so next {@link #update(Physics)} forces are applied as if the bone moved an additional
* amount in world space. */
translate(x, y) {
this.ux -= x;
this.uy -= y;
this.cx -= x;
this.cy -= y;
}
/** Rotates the physics constraint so next {@link #update(Physics)} forces are applied as if the bone rotated around the
* specified point in world space. */
rotate(x, y, degrees) {
const r = degrees * MathUtils.degRad, cos = Math.cos(r), sin = Math.sin(r);
const dx = this.cx - x, dy = this.cy - y;
this.translate(dx * cos - dy * sin - dx, dx * sin + dy * cos - dy);
}
};
// spine-core/src/Slot.ts
var Slot = class {
/** The slot's setup pose data. */
data;
/** The bone this slot belongs to. */
bone;
/** The color used to tint the slot's attachment. If {@link #getDarkColor()} is set, this is used as the light color for two
* color tinting. */
color;
/** The dark color used to tint the slot's attachment for two color tinting, or null if two color tinting is not used. The dark
* color's alpha is not used. */
darkColor = null;
attachment = null;
attachmentState = 0;
/** The index of the texture region to display when the slot's attachment has a {@link Sequence}. -1 represents the
* {@link Sequence#getSetupIndex()}. */
sequenceIndex = -1;
/** Values to deform the slot's attachment. For an unweighted mesh, the entries are local positions for each vertex. For a
* weighted mesh, the entries are an offset for each vertex which will be added to the mesh's local vertex positions.
*
* See {@link VertexAttachment#computeWorldVertices()} and {@link DeformTimeline}. */
deform = new Array();
constructor(data, bone) {
if (!data)
throw new Error("data cannot be null.");
if (!bone)
throw new Error("bone cannot be null.");
this.data = data;
this.bone = bone;
this.color = new Color();
this.darkColor = !data.darkColor ? null : new Color();
this.setToSetupPose();
}
/** The skeleton this slot belongs to. */
getSkeleton() {
return this.bone.skeleton;
}
/** The current attachment for the slot, or null if the slot has no attachment. */
getAttachment() {
return this.attachment;
}
/** Sets the slot's attachment and, if the attachment changed, resets {@link #sequenceIndex} and clears the {@link #deform}.
* The deform is not cleared if the old attachment has the same {@link VertexAttachment#getTimelineAttachment()} as the
* specified attachment. */
setAttachment(attachment) {
if (this.attachment == attachment)
return;
if (!(attachment instanceof VertexAttachment) || !(this.attachment instanceof VertexAttachment) || attachment.timelineAttachment != this.attachment.timelineAttachment) {
this.deform.length = 0;
}
this.attachment = attachment;
this.sequenceIndex = -1;
}
/** Sets this slot to the setup pose. */
setToSetupPose() {
this.color.setFromColor(this.data.color);
if (this.darkColor)
this.darkColor.setFromColor(this.data.darkColor);
if (!this.data.attachmentName)
this.attachment = null;
else {
this.attachment = null;
this.setAttachment(this.bone.skeleton.getAttachment(this.data.index, this.data.attachmentName));
}
}
};
// spine-core/src/TransformConstraint.ts
var TransformConstraint = class {
/** The transform constraint's setup pose data. */
data;
/** The bones that will be modified by this transform constraint. */
bones;
/** The target bone whose world transform will be copied to the constrained bones. */
target;
mixRotate = 0;
mixX = 0;
mixY = 0;
mixScaleX = 0;
mixScaleY = 0;
mixShearY = 0;
temp = new Vector2();
active = false;
constructor(data, skeleton) {
if (!data)
throw new Error("data cannot be null.");
if (!skeleton)
throw new Error("skeleton cannot be null.");
this.data = data;
this.bones = new Array();
for (let i = 0; i < data.bones.length; i++) {
let bone = skeleton.findBone(data.bones[i].name);
if (!bone)
throw new Error(`Couldn't find bone ${data.bones[i].name}.`);
this.bones.push(bone);
}
let target = skeleton.findBone(data.target.name);
if (!target)
throw new Error(`Couldn't find target bone ${data.target.name}.`);
this.target = target;
this.mixRotate = data.mixRotate;
this.mixX = data.mixX;
this.mixY = data.mixY;
this.mixScaleX = data.mixScaleX;
this.mixScaleY = data.mixScaleY;
this.mixShearY = data.mixShearY;
}
isActive() {
return this.active;
}
setToSetupPose() {
const data = this.data;
this.mixRotate = data.mixRotate;
this.mixX = data.mixX;
this.mixY = data.mixY;
this.mixScaleX = data.mixScaleX;
this.mixScaleY = data.mixScaleY;
this.mixShearY = data.mixShearY;
}
update(physics) {
if (this.mixRotate == 0 && this.mixX == 0 && this.mixY == 0 && this.mixScaleX == 0 && this.mixScaleY == 0 && this.mixShearY == 0)
return;
if (this.data.local) {
if (this.data.relative)
this.applyRelativeLocal();
else
this.applyAbsoluteLocal();
} else {
if (this.data.relative)
this.applyRelativeWorld();
else
this.applyAbsoluteWorld();
}
}
applyAbsoluteWorld() {
let mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
let translate = mixX != 0 || mixY != 0;
let target = this.target;
let ta = target.a, tb = target.b, tc = target.c, td = target.d;
let degRadReflect = ta * td - tb * tc > 0 ? MathUtils.degRad : -MathUtils.degRad;
let offsetRotation = this.data.offsetRotation * degRadReflect;
let offsetShearY = this.data.offsetShearY * degRadReflect;
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (mixRotate != 0) {
let a = bone.a, b = bone.b, c = bone.c, d = bone.d;
let r = Math.atan2(tc, ta) - Math.atan2(c, a) + offsetRotation;
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI)
r += MathUtils.PI2;
r *= mixRotate;
let cos = Math.cos(r), sin = Math.sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
if (translate) {
let temp = this.temp;
target.localToWorld(temp.set(this.data.offsetX, this.data.offsetY));
bone.worldX += (temp.x - bone.worldX) * mixX;
bone.worldY += (temp.y - bone.worldY) * mixY;
}
if (mixScaleX != 0) {
let s = Math.sqrt(bone.a * bone.a + bone.c * bone.c);
if (s != 0)
s = (s + (Math.sqrt(ta * ta + tc * tc) - s + this.data.offsetScaleX) * mixScaleX) / s;
bone.a *= s;
bone.c *= s;
}
if (mixScaleY != 0) {
let s = Math.sqrt(bone.b * bone.b + bone.d * bone.d);
if (s != 0)
s = (s + (Math.sqrt(tb * tb + td * td) - s + this.data.offsetScaleY) * mixScaleY) / s;
bone.b *= s;
bone.d *= s;
}
if (mixShearY > 0) {
let b = bone.b, d = bone.d;
let by = Math.atan2(d, b);
let r = Math.atan2(td, tb) - Math.atan2(tc, ta) - (by - Math.atan2(bone.c, bone.a));
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI)
r += MathUtils.PI2;
r = by + (r + offsetShearY) * mixShearY;
let s = Math.sqrt(b * b + d * d);
bone.b = Math.cos(r) * s;
bone.d = Math.sin(r) * s;
}
bone.updateAppliedTransform();
}
}
applyRelativeWorld() {
let mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
let translate = mixX != 0 || mixY != 0;
let target = this.target;
let ta = target.a, tb = target.b, tc = target.c, td = target.d;
let degRadReflect = ta * td - tb * tc > 0 ? MathUtils.degRad : -MathUtils.degRad;
let offsetRotation = this.data.offsetRotation * degRadReflect, offsetShearY = this.data.offsetShearY * degRadReflect;
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (mixRotate != 0) {
let a = bone.a, b = bone.b, c = bone.c, d = bone.d;
let r = Math.atan2(tc, ta) + offsetRotation;
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI)
r += MathUtils.PI2;
r *= mixRotate;
let cos = Math.cos(r), sin = Math.sin(r);
bone.a = cos * a - sin * c;
bone.b = cos * b - sin * d;
bone.c = sin * a + cos * c;
bone.d = sin * b + cos * d;
}
if (translate) {
let temp = this.temp;
target.localToWorld(temp.set(this.data.offsetX, this.data.offsetY));
bone.worldX += temp.x * mixX;
bone.worldY += temp.y * mixY;
}
if (mixScaleX != 0) {
let s = (Math.sqrt(ta * ta + tc * tc) - 1 + this.data.offsetScaleX) * mixScaleX + 1;
bone.a *= s;
bone.c *= s;
}
if (mixScaleY != 0) {
let s = (Math.sqrt(tb * tb + td * td) - 1 + this.data.offsetScaleY) * mixScaleY + 1;
bone.b *= s;
bone.d *= s;
}
if (mixShearY > 0) {
let r = Math.atan2(td, tb) - Math.atan2(tc, ta);
if (r > MathUtils.PI)
r -= MathUtils.PI2;
else if (r < -MathUtils.PI)
r += MathUtils.PI2;
let b = bone.b, d = bone.d;
r = Math.atan2(d, b) + (r - MathUtils.PI / 2 + offsetShearY) * mixShearY;
let s = Math.sqrt(b * b + d * d);
bone.b = Math.cos(r) * s;
bone.d = Math.sin(r) * s;
}
bone.updateAppliedTransform();
}
}
applyAbsoluteLocal() {
let mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
let target = this.target;
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
let rotation = bone.arotation;
if (mixRotate != 0)
rotation += (target.arotation - rotation + this.data.offsetRotation) * mixRotate;
let x = bone.ax, y = bone.ay;
x += (target.ax - x + this.data.offsetX) * mixX;
y += (target.ay - y + this.data.offsetY) * mixY;
let scaleX = bone.ascaleX, scaleY = bone.ascaleY;
if (mixScaleX != 0 && scaleX != 0)
scaleX = (scaleX + (target.ascaleX - scaleX + this.data.offsetScaleX) * mixScaleX) / scaleX;
if (mixScaleY != 0 && scaleY != 0)
scaleY = (scaleY + (target.ascaleY - scaleY + this.data.offsetScaleY) * mixScaleY) / scaleY;
let shearY = bone.ashearY;
if (mixShearY != 0)
shearY += (target.ashearY - shearY + this.data.offsetShearY) * mixShearY;
bone.updateWorldTransformWith(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY);
}
}
applyRelativeLocal() {
let mixRotate = this.mixRotate, mixX = this.mixX, mixY = this.mixY, mixScaleX = this.mixScaleX, mixScaleY = this.mixScaleY, mixShearY = this.mixShearY;
let target = this.target;
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
let rotation = bone.arotation + (target.arotation + this.data.offsetRotation) * mixRotate;
let x = bone.ax + (target.ax + this.data.offsetX) * mixX;
let y = bone.ay + (target.ay + this.data.offsetY) * mixY;
let scaleX = bone.ascaleX * ((target.ascaleX - 1 + this.data.offsetScaleX) * mixScaleX + 1);
let scaleY = bone.ascaleY * ((target.ascaleY - 1 + this.data.offsetScaleY) * mixScaleY + 1);
let shearY = bone.ashearY + (target.ashearY + this.data.offsetShearY) * mixShearY;
bone.updateWorldTransformWith(x, y, rotation, scaleX, scaleY, bone.ashearX, shearY);
}
}
};
// spine-core/src/Skeleton.ts
var _Skeleton = class {
/** The skeleton's setup pose data. */
data;
/** The skeleton's bones, sorted parent first. The root bone is always the first bone. */
bones;
/** The skeleton's slots in the setup pose draw order. */
slots;
/** The skeleton's slots in the order they should be drawn. The returned array may be modified to change the draw order. */
drawOrder;
/** The skeleton's IK constraints. */
ikConstraints;
/** The skeleton's transform constraints. */
transformConstraints;
/** The skeleton's path constraints. */
pathConstraints;
/** The skeleton's physics constraints. */
physicsConstraints;
/** The list of bones and constraints, sorted in the order they should be updated, as computed by {@link #updateCache()}. */
_updateCache = new Array();
/** The skeleton's current skin. May be null. */
skin = null;
/** The color to tint all the skeleton's attachments. */
color;
/** Scales the entire skeleton on the X axis. This affects all bones, even if the bone's transform mode disallows scale
* inheritance. */
scaleX = 1;
/** Scales the entire skeleton on the Y axis. This affects all bones, even if the bone's transform mode disallows scale
* inheritance. */
_scaleY = 1;
get scaleY() {
return _Skeleton.yDown ? -this._scaleY : this._scaleY;
}
set scaleY(scaleY) {
this._scaleY = scaleY;
}
/** Sets the skeleton X position, which is added to the root bone worldX position. */
x = 0;
/** Sets the skeleton Y position, which is added to the root bone worldY position. */
y = 0;
/** Returns the skeleton's time. This is used for time-based manipulations, such as {@link PhysicsConstraint}.
* <p>
* See {@link #update(float)}. */
time = 0;
constructor(data) {
if (!data)
throw new Error("data cannot be null.");
this.data = data;
this.bones = new Array();
for (let i = 0; i < data.bones.length; i++) {
let boneData = data.bones[i];
let bone;
if (!boneData.parent)
bone = new Bone(boneData, this, null);
else {
let parent = this.bones[boneData.parent.index];
bone = new Bone(boneData, this, parent);
parent.children.push(bone);
}
this.bones.push(bone);
}
this.slots = new Array();
this.drawOrder = new Array();
for (let i = 0; i < data.slots.length; i++) {
let slotData = data.slots[i];
let bone = this.bones[slotData.boneData.index];
let slot = new Slot(slotData, bone);
this.slots.push(slot);
this.drawOrder.push(slot);
}
this.ikConstraints = new Array();
for (let i = 0; i < data.ikConstraints.length; i++) {
let ikConstraintData = data.ikConstraints[i];
this.ikConstraints.push(new IkConstraint(ikConstraintData, this));
}
this.transformConstraints = new Array();
for (let i = 0; i < data.transformConstraints.length; i++) {
let transformConstraintData = data.transformConstraints[i];
this.transformConstraints.push(new TransformConstraint(transformConstraintData, this));
}
this.pathConstraints = new Array();
for (let i = 0; i < data.pathConstraints.length; i++) {
let pathConstraintData = data.pathConstraints[i];
this.pathConstraints.push(new PathConstraint(pathConstraintData, this));
}
this.physicsConstraints = new Array();
for (let i = 0; i < data.physicsConstraints.length; i++) {
let physicsConstraintData = data.physicsConstraints[i];
this.physicsConstraints.push(new PhysicsConstraint(physicsConstraintData, this));
}
this.color = new Color(1, 1, 1, 1);
this.updateCache();
}
/** Caches information about bones and constraints. Must be called if the {@link #getSkin()} is modified or if bones,
* constraints, or weighted path attachments are added or removed. */
updateCache() {
let updateCache = this._updateCache;
updateCache.length = 0;
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
bone.sorted = bone.data.skinRequired;
bone.active = !bone.sorted;
}
if (this.skin) {
let skinBones = this.skin.bones;
for (let i = 0, n = this.skin.bones.length; i < n; i++) {
let bone = this.bones[skinBones[i].index];
do {
bone.sorted = false;
bone.active = true;
bone = bone.parent;
} while (bone);
}
}
let ikConstraints = this.ikConstraints;
let transformConstraints = this.transformConstraints;
let pathConstraints = this.pathConstraints;
let physicsConstraints = this.physicsConstraints;
let ikCount = ikConstraints.length, transformCount = transformConstraints.length, pathCount = pathConstraints.length, physicsCount = this.physicsConstraints.length;
let constraintCount = ikCount + transformCount + pathCount + physicsCount;
outer:
for (let i = 0; i < constraintCount; i++) {
for (let ii = 0; ii < ikCount; ii++) {
let constraint = ikConstraints[ii];
if (constraint.data.order == i) {
this.sortIkConstraint(constraint);
continue outer;
}
}
for (let ii = 0; ii < transformCount; ii++) {
let constraint = transformConstraints[ii];
if (constraint.data.order == i) {
this.sortTransformConstraint(constraint);
continue outer;
}
}
for (let ii = 0; ii < pathCount; ii++) {
let constraint = pathConstraints[ii];
if (constraint.data.order == i) {
this.sortPathConstraint(constraint);
continue outer;
}
}
for (let ii = 0; ii < physicsCount; ii++) {
const constraint = physicsConstraints[ii];
if (constraint.data.order == i) {
this.sortPhysicsConstraint(constraint);
continue outer;
}
}
}
for (let i = 0, n = bones.length; i < n; i++)
this.sortBone(bones[i]);
}
sortIkConstraint(constraint) {
constraint.active = constraint.target.isActive() && (!constraint.data.skinRequired || this.skin && Utils.contains(this.skin.constraints, constraint.data, true));
if (!constraint.active)
return;
let target = constraint.target;
this.sortBone(target);
let constrained = constraint.bones;
let parent = constrained[0];
this.sortBone(parent);
if (constrained.length == 1) {
this._updateCache.push(constraint);
this.sortReset(parent.children);
} else {
let child = constrained[constrained.length - 1];
this.sortBone(child);
this._updateCache.push(constraint);
this.sortReset(parent.children);
child.sorted = true;
}
}
sortPathConstraint(constraint) {
constraint.active = constraint.target.bone.isActive() && (!constraint.data.skinRequired || this.skin && Utils.contains(this.skin.constraints, constraint.data, true));
if (!constraint.active)
return;
let slot = constraint.target;
let slotIndex = slot.data.index;
let slotBone = slot.bone;
if (this.skin)
this.sortPathConstraintAttachment(this.skin, slotIndex, slotBone);
if (this.data.defaultSkin && this.data.defaultSkin != this.skin)
this.sortPathConstraintAttachment(this.data.defaultSkin, slotIndex, slotBone);
for (let i = 0, n = this.data.skins.length; i < n; i++)
this.sortPathConstraintAttachment(this.data.skins[i], slotIndex, slotBone);
let attachment = slot.getAttachment();
if (attachment instanceof PathAttachment)
this.sortPathConstraintAttachmentWith(attachment, slotBone);
let constrained = constraint.bones;
let boneCount = constrained.length;
for (let i = 0; i < boneCount; i++)
this.sortBone(constrained[i]);
this._updateCache.push(constraint);
for (let i = 0; i < boneCount; i++)
this.sortReset(constrained[i].children);
for (let i = 0; i < boneCount; i++)
constrained[i].sorted = true;
}
sortTransformConstraint(constraint) {
constraint.active = constraint.target.isActive() && (!constraint.data.skinRequired || this.skin && Utils.contains(this.skin.constraints, constraint.data, true));
if (!constraint.active)
return;
this.sortBone(constraint.target);
let constrained = constraint.bones;
let boneCount = constrained.length;
if (constraint.data.local) {
for (let i = 0; i < boneCount; i++) {
let child = constrained[i];
this.sortBone(child.parent);
this.sortBone(child);
}
} else {
for (let i = 0; i < boneCount; i++) {
this.sortBone(constrained[i]);
}
}
this._updateCache.push(constraint);
for (let i = 0; i < boneCount; i++)
this.sortReset(constrained[i].children);
for (let i = 0; i < boneCount; i++)
constrained[i].sorted = true;
}
sortPathConstraintAttachment(skin, slotIndex, slotBone) {
let attachments = skin.attachments[slotIndex];
if (!attachments)
return;
for (let key in attachments) {
this.sortPathConstraintAttachmentWith(attachments[key], slotBone);
}
}
sortPathConstraintAttachmentWith(attachment, slotBone) {
if (!(attachment instanceof PathAttachment))
return;
let pathBones = attachment.bones;
if (!pathBones)
this.sortBone(slotBone);
else {
let bones = this.bones;
for (let i = 0, n = pathBones.length; i < n; ) {
let nn = pathBones[i++];
nn += i;
while (i < nn)
this.sortBone(bones[pathBones[i++]]);
}
}
}
sortPhysicsConstraint(constraint) {
const bone = constraint.bone;
constraint.active = bone.active && (!constraint.data.skinRequired || this.skin != null && Utils.contains(this.skin.constraints, constraint.data, true));
if (!constraint.active)
return;
this.sortBone(bone);
this._updateCache.push(constraint);
this.sortReset(bone.children);
bone.sorted = true;
}
sortBone(bone) {
if (!bone)
return;
if (bone.sorted)
return;
let parent = bone.parent;
if (parent)
this.sortBone(parent);
bone.sorted = true;
this._updateCache.push(bone);
}
sortReset(bones) {
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (!bone.active)
continue;
if (bone.sorted)
this.sortReset(bone.children);
bone.sorted = false;
}
}
/** Updates the world transform for each bone and applies all constraints.
*
* See [World transforms](http://esotericsoftware.com/spine-runtime-skeletons#World-transforms) in the Spine
* Runtimes Guide. */
updateWorldTransform(physics) {
if (physics === void 0 || physics === null)
throw new Error("physics is undefined");
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
bone.ax = bone.x;
bone.ay = bone.y;
bone.arotation = bone.rotation;
bone.ascaleX = bone.scaleX;
bone.ascaleY = bone.scaleY;
bone.ashearX = bone.shearX;
bone.ashearY = bone.shearY;
}
let updateCache = this._updateCache;
for (let i = 0, n = updateCache.length; i < n; i++)
updateCache[i].update(physics);
}
updateWorldTransformWith(physics, parent) {
if (!parent)
throw new Error("parent cannot be null.");
let bones = this.bones;
for (let i = 1, n = bones.length; i < n; i++) {
let bone = bones[i];
bone.ax = bone.x;
bone.ay = bone.y;
bone.arotation = bone.rotation;
bone.ascaleX = bone.scaleX;
bone.ascaleY = bone.scaleY;
bone.ashearX = bone.shearX;
bone.ashearY = bone.shearY;
}
let rootBone = this.getRootBone();
if (!rootBone)
throw new Error("Root bone must not be null.");
let pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d;
rootBone.worldX = pa * this.x + pb * this.y + parent.worldX;
rootBone.worldY = pc * this.x + pd * this.y + parent.worldY;
const rx = (rootBone.rotation + rootBone.shearX) * MathUtils.degRad;
const ry = (rootBone.rotation + 90 + rootBone.shearY) * MathUtils.degRad;
const la = Math.cos(rx) * rootBone.scaleX;
const lb = Math.cos(ry) * rootBone.scaleY;
const lc = Math.sin(rx) * rootBone.scaleX;
const ld = Math.sin(ry) * rootBone.scaleY;
rootBone.a = (pa * la + pb * lc) * this.scaleX;
rootBone.b = (pa * lb + pb * ld) * this.scaleX;
rootBone.c = (pc * la + pd * lc) * this.scaleY;
rootBone.d = (pc * lb + pd * ld) * this.scaleY;
let updateCache = this._updateCache;
for (let i = 0, n = updateCache.length; i < n; i++) {
let updatable = updateCache[i];
if (updatable != rootBone)
updatable.update(physics);
}
}
/** Sets the bones, constraints, and slots to their setup pose values. */
setToSetupPose() {
this.setBonesToSetupPose();
this.setSlotsToSetupPose();
}
/** Sets the bones and constraints to their setup pose values. */
setBonesToSetupPose() {
for (const bone of this.bones)
bone.setToSetupPose();
for (const constraint of this.ikConstraints)
constraint.setToSetupPose();
for (const constraint of this.transformConstraints)
constraint.setToSetupPose();
for (const constraint of this.pathConstraints)
constraint.setToSetupPose();
for (const constraint of this.physicsConstraints)
constraint.setToSetupPose();
}
/** Sets the slots and draw order to their setup pose values. */
setSlotsToSetupPose() {
let slots = this.slots;
Utils.arrayCopy(slots, 0, this.drawOrder, 0, slots.length);
for (let i = 0, n = slots.length; i < n; i++)
slots[i].setToSetupPose();
}
/** @returns May return null. */
getRootBone() {
if (this.bones.length == 0)
return null;
return this.bones[0];
}
/** @returns May be null. */
findBone(boneName) {
if (!boneName)
throw new Error("boneName cannot be null.");
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (bone.data.name == boneName)
return bone;
}
return null;
}
/** Finds a slot by comparing each slot's name. It is more efficient to cache the results of this method than to call it
* repeatedly.
* @returns May be null. */
findSlot(slotName) {
if (!slotName)
throw new Error("slotName cannot be null.");
let slots = this.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (slot.data.name == slotName)
return slot;
}
return null;
}
/** Sets a skin by name.
*
* See {@link #setSkin()}. */
setSkinByName(skinName) {
let skin = this.data.findSkin(skinName);
if (!skin)
throw new Error("Skin not found: " + skinName);
this.setSkin(skin);
}
/** Sets the skin used to look up attachments before looking in the {@link SkeletonData#defaultSkin default skin}. If the
* skin is changed, {@link #updateCache()} is called.
*
* Attachments from the new skin are attached if the corresponding attachment from the old skin was attached. If there was no
* old skin, each slot's setup mode attachment is attached from the new skin.
*
* After changing the skin, the visible attachments can be reset to those attached in the setup pose by calling
* {@link #setSlotsToSetupPose()}. Also, often {@link AnimationState#apply()} is called before the next time the
* skeleton is rendered to allow any attachment keys in the current animation(s) to hide or show attachments from the new skin.
* @param newSkin May be null. */
setSkin(newSkin) {
if (newSkin == this.skin)
return;
if (newSkin) {
if (this.skin)
newSkin.attachAll(this, this.skin);
else {
let slots = this.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
let name = slot.data.attachmentName;
if (name) {
let attachment = newSkin.getAttachment(i, name);
if (attachment)
slot.setAttachment(attachment);
}
}
}
}
this.skin = newSkin;
this.updateCache();
}
/** Finds an attachment by looking in the {@link #skin} and {@link SkeletonData#defaultSkin} using the slot name and attachment
* name.
*
* See {@link #getAttachment()}.
* @returns May be null. */
getAttachmentByName(slotName, attachmentName) {
let slot = this.data.findSlot(slotName);
if (!slot)
throw new Error(`Can't find slot with name ${slotName}`);
return this.getAttachment(slot.index, attachmentName);
}
/** Finds an attachment by looking in the {@link #skin} and {@link SkeletonData#defaultSkin} using the slot index and
* attachment name. First the skin is checked and if the attachment was not found, the default skin is checked.
*
* See [Runtime skins](http://esotericsoftware.com/spine-runtime-skins) in the Spine Runtimes Guide.
* @returns May be null. */
getAttachment(slotIndex, attachmentName) {
if (!attachmentName)
throw new Error("attachmentName cannot be null.");
if (this.skin) {
let attachment = this.skin.getAttachment(slotIndex, attachmentName);
if (attachment)
return attachment;
}
if (this.data.defaultSkin)
return this.data.defaultSkin.getAttachment(slotIndex, attachmentName);
return null;
}
/** A convenience method to set an attachment by finding the slot with {@link #findSlot()}, finding the attachment with
* {@link #getAttachment()}, then setting the slot's {@link Slot#attachment}.
* @param attachmentName May be null to clear the slot's attachment. */
setAttachment(slotName, attachmentName) {
if (!slotName)
throw new Error("slotName cannot be null.");
let slots = this.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (slot.data.name == slotName) {
let attachment = null;
if (attachmentName) {
attachment = this.getAttachment(i, attachmentName);
if (!attachment)
throw new Error("Attachment not found: " + attachmentName + ", for slot: " + slotName);
}
slot.setAttachment(attachment);
return;
}
}
throw new Error("Slot not found: " + slotName);
}
/** Finds an IK constraint by comparing each IK constraint's name. It is more efficient to cache the results of this method
* than to call it repeatedly.
* @return May be null. */
findIkConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
return this.ikConstraints.find((constraint) => constraint.data.name == constraintName) ?? null;
}
/** Finds a transform constraint by comparing each transform constraint's name. It is more efficient to cache the results of
* this method than to call it repeatedly.
* @return May be null. */
findTransformConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
return this.transformConstraints.find((constraint) => constraint.data.name == constraintName) ?? null;
}
/** Finds a path constraint by comparing each path constraint's name. It is more efficient to cache the results of this method
* than to call it repeatedly.
* @return May be null. */
findPathConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
return this.pathConstraints.find((constraint) => constraint.data.name == constraintName) ?? null;
}
/** Finds a physics constraint by comparing each physics constraint's name. It is more efficient to cache the results of this
* method than to call it repeatedly. */
findPhysicsConstraint(constraintName) {
if (constraintName == null)
throw new Error("constraintName cannot be null.");
return this.physicsConstraints.find((constraint) => constraint.data.name == constraintName) ?? null;
}
/** Returns the axis aligned bounding box (AABB) of the region and mesh attachments for the current pose as `{ x: number, y: number, width: number, height: number }`.
* Note that this method will create temporary objects which can add to garbage collection pressure. Use `getBounds()` if garbage collection is a concern. */
getBoundsRect(clipper) {
let offset = new Vector2();
let size = new Vector2();
this.getBounds(offset, size, void 0, clipper);
return { x: offset.x, y: offset.y, width: size.x, height: size.y };
}
/** Returns the axis aligned bounding box (AABB) of the region and mesh attachments for the current pose.
* @param offset An output value, the distance from the skeleton origin to the bottom left corner of the AABB.
* @param size An output value, the width and height of the AABB.
* @param temp Working memory to temporarily store attachments' computed world vertices.
* @param clipper {@link SkeletonClipping} to use. If <code>null</code>, no clipping is applied. */
getBounds(offset, size, temp = new Array(2), clipper = null) {
if (!offset)
throw new Error("offset cannot be null.");
if (!size)
throw new Error("size cannot be null.");
let drawOrder = this.drawOrder;
let minX = Number.POSITIVE_INFINITY, minY = Number.POSITIVE_INFINITY, maxX = Number.NEGATIVE_INFINITY, maxY = Number.NEGATIVE_INFINITY;
for (let i = 0, n = drawOrder.length; i < n; i++) {
let slot = drawOrder[i];
if (!slot.bone.active)
continue;
let verticesLength = 0;
let vertices = null;
let triangles = null;
let attachment = slot.getAttachment();
if (attachment instanceof RegionAttachment) {
verticesLength = 8;
vertices = Utils.setArraySize(temp, verticesLength, 0);
attachment.computeWorldVertices(slot, vertices, 0, 2);
triangles = _Skeleton.quadTriangles;
} else if (attachment instanceof MeshAttachment) {
let mesh = attachment;
verticesLength = mesh.worldVerticesLength;
vertices = Utils.setArraySize(temp, verticesLength, 0);
mesh.computeWorldVertices(slot, 0, verticesLength, vertices, 0, 2);
triangles = mesh.triangles;
} else if (attachment instanceof ClippingAttachment && clipper != null) {
clipper.clipStart(slot, attachment);
continue;
}
if (vertices && triangles) {
if (clipper != null && clipper.isClipping()) {
clipper.clipTriangles(vertices, triangles, triangles.length);
vertices = clipper.clippedVertices;
verticesLength = clipper.clippedVertices.length;
}
for (let ii = 0, nn = vertices.length; ii < nn; ii += 2) {
let x = vertices[ii], y = vertices[ii + 1];
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
if (clipper != null)
clipper.clipEndWithSlot(slot);
}
if (clipper != null)
clipper.clipEnd();
offset.set(minX, minY);
size.set(maxX - minX, maxY - minY);
}
/** Increments the skeleton's {@link #time}. */
update(delta) {
this.time += delta;
}
physicsTranslate(x, y) {
const physicsConstraints = this.physicsConstraints;
for (let i = 0, n = physicsConstraints.length; i < n; i++)
physicsConstraints[i].translate(x, y);
}
/** Calls {@link PhysicsConstraint#rotate(float, float, float)} for each physics constraint. */
physicsRotate(x, y, degrees) {
const physicsConstraints = this.physicsConstraints;
for (let i = 0, n = physicsConstraints.length; i < n; i++)
physicsConstraints[i].rotate(x, y, degrees);
}
};
var Skeleton = _Skeleton;
__publicField(Skeleton, "quadTriangles", [0, 1, 2, 2, 3, 0]);
__publicField(Skeleton, "yDown", false);
var Physics = /* @__PURE__ */ ((Physics2) => {
Physics2[Physics2["none"] = 0] = "none";
Physics2[Physics2["reset"] = 1] = "reset";
Physics2[Physics2["update"] = 2] = "update";
Physics2[Physics2["pose"] = 3] = "pose";
return Physics2;
})(Physics || {});
// spine-core/src/PhysicsConstraintData.ts
var PhysicsConstraintData = class extends ConstraintData {
_bone = null;
/** The bone constrained by this physics constraint. */
set bone(boneData) {
this._bone = boneData;
}
get bone() {
if (!this._bone)
throw new Error("BoneData not set.");
else
return this._bone;
}
x = 0;
y = 0;
rotate = 0;
scaleX = 0;
shearX = 0;
limit = 0;
step = 0;
inertia = 0;
strength = 0;
damping = 0;
massInverse = 0;
wind = 0;
gravity = 0;
/** A percentage (0-1) that controls the mix between the constrained and unconstrained poses. */
mix = 0;
inertiaGlobal = false;
strengthGlobal = false;
dampingGlobal = false;
massGlobal = false;
windGlobal = false;
gravityGlobal = false;
mixGlobal = false;
constructor(name) {
super(name, 0, false);
}
};
// spine-core/src/SkeletonData.ts
var SkeletonData = class {
/** The skeleton's name, which by default is the name of the skeleton data file, if possible. May be null. */
name = null;
/** The skeleton's bones, sorted parent first. The root bone is always the first bone. */
bones = new Array();
// Ordered parents first.
/** The skeleton's slots in the setup pose draw order. */
slots = new Array();
// Setup pose draw order.
skins = new Array();
/** The skeleton's default skin. By default this skin contains all attachments that were not in a skin in Spine.
*
* See {@link Skeleton#getAttachmentByName()}.
* May be null. */
defaultSkin = null;
/** The skeleton's events. */
events = new Array();
/** The skeleton's animations. */
animations = new Array();
/** The skeleton's IK constraints. */
ikConstraints = new Array();
/** The skeleton's transform constraints. */
transformConstraints = new Array();
/** The skeleton's path constraints. */
pathConstraints = new Array();
/** The skeleton's physics constraints. */
physicsConstraints = new Array();
/** The X coordinate of the skeleton's axis aligned bounding box in the setup pose. */
x = 0;
/** The Y coordinate of the skeleton's axis aligned bounding box in the setup pose. */
y = 0;
/** The width of the skeleton's axis aligned bounding box in the setup pose. */
width = 0;
/** The height of the skeleton's axis aligned bounding box in the setup pose. */
height = 0;
/** Baseline scale factor for applying distance-dependent effects on non-scalable properties, such as angle or scale. Default
* is 100. */
referenceScale = 100;
/** The Spine version used to export the skeleton data, or null. */
version = null;
/** The skeleton data hash. This value will change if any of the skeleton data has changed. May be null. */
hash = null;
// Nonessential
/** The dopesheet FPS in Spine. Available only when nonessential data was exported. */
fps = 0;
/** The path to the images directory as defined in Spine. Available only when nonessential data was exported. May be null. */
imagesPath = null;
/** The path to the audio directory as defined in Spine. Available only when nonessential data was exported. May be null. */
audioPath = null;
/** Finds a bone by comparing each bone's name. It is more efficient to cache the results of this method than to call it
* multiple times.
* @returns May be null. */
findBone(boneName) {
if (!boneName)
throw new Error("boneName cannot be null.");
let bones = this.bones;
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (bone.name == boneName)
return bone;
}
return null;
}
/** Finds a slot by comparing each slot's name. It is more efficient to cache the results of this method than to call it
* multiple times.
* @returns May be null. */
findSlot(slotName) {
if (!slotName)
throw new Error("slotName cannot be null.");
let slots = this.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (slot.name == slotName)
return slot;
}
return null;
}
/** Finds a skin by comparing each skin's name. It is more efficient to cache the results of this method than to call it
* multiple times.
* @returns May be null. */
findSkin(skinName) {
if (!skinName)
throw new Error("skinName cannot be null.");
let skins = this.skins;
for (let i = 0, n = skins.length; i < n; i++) {
let skin = skins[i];
if (skin.name == skinName)
return skin;
}
return null;
}
/** Finds an event by comparing each events's name. It is more efficient to cache the results of this method than to call it
* multiple times.
* @returns May be null. */
findEvent(eventDataName) {
if (!eventDataName)
throw new Error("eventDataName cannot be null.");
let events = this.events;
for (let i = 0, n = events.length; i < n; i++) {
let event = events[i];
if (event.name == eventDataName)
return event;
}
return null;
}
/** Finds an animation by comparing each animation's name. It is more efficient to cache the results of this method than to
* call it multiple times.
* @returns May be null. */
findAnimation(animationName) {
if (!animationName)
throw new Error("animationName cannot be null.");
let animations = this.animations;
for (let i = 0, n = animations.length; i < n; i++) {
let animation = animations[i];
if (animation.name == animationName)
return animation;
}
return null;
}
/** Finds an IK constraint by comparing each IK constraint's name. It is more efficient to cache the results of this method
* than to call it multiple times.
* @return May be null. */
findIkConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
const ikConstraints = this.ikConstraints;
for (let i = 0, n = ikConstraints.length; i < n; i++) {
const constraint = ikConstraints[i];
if (constraint.name == constraintName)
return constraint;
}
return null;
}
/** Finds a transform constraint by comparing each transform constraint's name. It is more efficient to cache the results of
* this method than to call it multiple times.
* @return May be null. */
findTransformConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
const transformConstraints = this.transformConstraints;
for (let i = 0, n = transformConstraints.length; i < n; i++) {
const constraint = transformConstraints[i];
if (constraint.name == constraintName)
return constraint;
}
return null;
}
/** Finds a path constraint by comparing each path constraint's name. It is more efficient to cache the results of this method
* than to call it multiple times.
* @return May be null. */
findPathConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
const pathConstraints = this.pathConstraints;
for (let i = 0, n = pathConstraints.length; i < n; i++) {
const constraint = pathConstraints[i];
if (constraint.name == constraintName)
return constraint;
}
return null;
}
/** Finds a physics constraint by comparing each physics constraint's name. It is more efficient to cache the results of this method
* than to call it multiple times.
* @return May be null. */
findPhysicsConstraint(constraintName) {
if (!constraintName)
throw new Error("constraintName cannot be null.");
const physicsConstraints = this.physicsConstraints;
for (let i = 0, n = physicsConstraints.length; i < n; i++) {
const constraint = physicsConstraints[i];
if (constraint.name == constraintName)
return constraint;
}
return null;
}
};
// spine-core/src/Skin.ts
var SkinEntry = class {
constructor(slotIndex = 0, name, attachment) {
this.slotIndex = slotIndex;
this.name = name;
this.attachment = attachment;
}
};
var Skin = class {
/** The skin's name, which is unique across all skins in the skeleton. */
name;
attachments = new Array();
bones = Array();
constraints = new Array();
/** The color of the skin as it was in Spine, or a default color if nonessential data was not exported. */
color = new Color(0.99607843, 0.61960787, 0.30980393, 1);
// fe9e4fff
constructor(name) {
if (!name)
throw new Error("name cannot be null.");
this.name = name;
}
/** Adds an attachment to the skin for the specified slot index and name. */
setAttachment(slotIndex, name, attachment) {
if (!attachment)
throw new Error("attachment cannot be null.");
let attachments = this.attachments;
if (slotIndex >= attachments.length)
attachments.length = slotIndex + 1;
if (!attachments[slotIndex])
attachments[slotIndex] = {};
attachments[slotIndex][name] = attachment;
}
/** Adds all attachments, bones, and constraints from the specified skin to this skin. */
addSkin(skin) {
for (let i = 0; i < skin.bones.length; i++) {
let bone = skin.bones[i];
let contained = false;
for (let ii = 0; ii < this.bones.length; ii++) {
if (this.bones[ii] == bone) {
contained = true;
break;
}
}
if (!contained)
this.bones.push(bone);
}
for (let i = 0; i < skin.constraints.length; i++) {
let constraint = skin.constraints[i];
let contained = false;
for (let ii = 0; ii < this.constraints.length; ii++) {
if (this.constraints[ii] == constraint) {
contained = true;
break;
}
}
if (!contained)
this.constraints.push(constraint);
}
let attachments = skin.getAttachments();
for (let i = 0; i < attachments.length; i++) {
var attachment = attachments[i];
this.setAttachment(attachment.slotIndex, attachment.name, attachment.attachment);
}
}
/** Adds all bones and constraints and copies of all attachments from the specified skin to this skin. Mesh attachments are not
* copied, instead a new linked mesh is created. The attachment copies can be modified without affecting the originals. */
copySkin(skin) {
for (let i = 0; i < skin.bones.length; i++) {
let bone = skin.bones[i];
let contained = false;
for (let ii = 0; ii < this.bones.length; ii++) {
if (this.bones[ii] == bone) {
contained = true;
break;
}
}
if (!contained)
this.bones.push(bone);
}
for (let i = 0; i < skin.constraints.length; i++) {
let constraint = skin.constraints[i];
let contained = false;
for (let ii = 0; ii < this.constraints.length; ii++) {
if (this.constraints[ii] == constraint) {
contained = true;
break;
}
}
if (!contained)
this.constraints.push(constraint);
}
let attachments = skin.getAttachments();
for (let i = 0; i < attachments.length; i++) {
var attachment = attachments[i];
if (!attachment.attachment)
continue;
if (attachment.attachment instanceof MeshAttachment) {
attachment.attachment = attachment.attachment.newLinkedMesh();
this.setAttachment(attachment.slotIndex, attachment.name, attachment.attachment);
} else {
attachment.attachment = attachment.attachment.copy();
this.setAttachment(attachment.slotIndex, attachment.name, attachment.attachment);
}
}
}
/** Returns the attachment for the specified slot index and name, or null. */
getAttachment(slotIndex, name) {
let dictionary = this.attachments[slotIndex];
return dictionary ? dictionary[name] : null;
}
/** Removes the attachment in the skin for the specified slot index and name, if any. */
removeAttachment(slotIndex, name) {
let dictionary = this.attachments[slotIndex];
if (dictionary)
delete dictionary[name];
}
/** Returns all attachments in this skin. */
getAttachments() {
let entries = new Array();
for (var i = 0; i < this.attachments.length; i++) {
let slotAttachments = this.attachments[i];
if (slotAttachments) {
for (let name in slotAttachments) {
let attachment = slotAttachments[name];
if (attachment)
entries.push(new SkinEntry(i, name, attachment));
}
}
}
return entries;
}
/** Returns all attachments in this skin for the specified slot index. */
getAttachmentsForSlot(slotIndex, attachments) {
let slotAttachments = this.attachments[slotIndex];
if (slotAttachments) {
for (let name in slotAttachments) {
let attachment = slotAttachments[name];
if (attachment)
attachments.push(new SkinEntry(slotIndex, name, attachment));
}
}
}
/** Clears all attachments, bones, and constraints. */
clear() {
this.attachments.length = 0;
this.bones.length = 0;
this.constraints.length = 0;
}
/** Attach each attachment in this skin if the corresponding attachment in the old skin is currently attached. */
attachAll(skeleton, oldSkin) {
let slotIndex = 0;
for (let i = 0; i < skeleton.slots.length; i++) {
let slot = skeleton.slots[i];
let slotAttachment = slot.getAttachment();
if (slotAttachment && slotIndex < oldSkin.attachments.length) {
let dictionary = oldSkin.attachments[slotIndex];
for (let key in dictionary) {
let skinAttachment = dictionary[key];
if (slotAttachment == skinAttachment) {
let attachment = this.getAttachment(slotIndex, key);
if (attachment)
slot.setAttachment(attachment);
break;
}
}
}
slotIndex++;
}
}
};
// spine-core/src/SlotData.ts
var SlotData = class {
/** The index of the slot in {@link Skeleton#getSlots()}. */
index = 0;
/** The name of the slot, which is unique across all slots in the skeleton. */
name;
/** The bone this slot belongs to. */
boneData;
/** The color used to tint the slot's attachment. If {@link #getDarkColor()} is set, this is used as the light color for two
* color tinting. */
color = new Color(1, 1, 1, 1);
/** The dark color used to tint the slot's attachment for two color tinting, or null if two color tinting is not used. The dark
* color's alpha is not used. */
darkColor = null;
/** The name of the attachment that is visible for this slot in the setup pose, or null if no attachment is visible. */
attachmentName = null;
/** The blend mode for drawing the slot's attachment. */
blendMode = BlendMode.Normal;
/** False if the slot was hidden in Spine and nonessential data was exported. Does not affect runtime rendering. */
visible = true;
constructor(index, name, boneData) {
if (index < 0)
throw new Error("index must be >= 0.");
if (!name)
throw new Error("name cannot be null.");
if (!boneData)
throw new Error("boneData cannot be null.");
this.index = index;
this.name = name;
this.boneData = boneData;
}
};
var BlendMode = /* @__PURE__ */ ((BlendMode4) => {
BlendMode4[BlendMode4["Normal"] = 0] = "Normal";
BlendMode4[BlendMode4["Additive"] = 1] = "Additive";
BlendMode4[BlendMode4["Multiply"] = 2] = "Multiply";
BlendMode4[BlendMode4["Screen"] = 3] = "Screen";
return BlendMode4;
})(BlendMode || {});
// spine-core/src/TransformConstraintData.ts
var TransformConstraintData = class extends ConstraintData {
/** The bones that will be modified by this transform constraint. */
bones = new Array();
/** The target bone whose world transform will be copied to the constrained bones. */
_target = null;
set target(boneData) {
this._target = boneData;
}
get target() {
if (!this._target)
throw new Error("BoneData not set.");
else
return this._target;
}
mixRotate = 0;
mixX = 0;
mixY = 0;
mixScaleX = 0;
mixScaleY = 0;
mixShearY = 0;
/** An offset added to the constrained bone rotation. */
offsetRotation = 0;
/** An offset added to the constrained bone X translation. */
offsetX = 0;
/** An offset added to the constrained bone Y translation. */
offsetY = 0;
/** An offset added to the constrained bone scaleX. */
offsetScaleX = 0;
/** An offset added to the constrained bone scaleY. */
offsetScaleY = 0;
/** An offset added to the constrained bone shearY. */
offsetShearY = 0;
relative = false;
local = false;
constructor(name) {
super(name, 0, false);
}
};
// spine-core/src/SkeletonBinary.ts
var SkeletonBinary = class {
/** Scales bone positions, image sizes, and translations as they are loaded. This allows different size images to be used at
* runtime than were used in Spine.
*
* See [Scaling](http://esotericsoftware.com/spine-loading-skeleton-data#Scaling) in the Spine Runtimes Guide. */
scale = 1;
attachmentLoader;
linkedMeshes = new Array();
constructor(attachmentLoader) {
this.attachmentLoader = attachmentLoader;
}
readSkeletonData(binary) {
let scale = this.scale;
let skeletonData = new SkeletonData();
skeletonData.name = "";
let input = new BinaryInput(binary);
let lowHash = input.readInt32();
let highHash = input.readInt32();
skeletonData.hash = highHash == 0 && lowHash == 0 ? null : highHash.toString(16) + lowHash.toString(16);
skeletonData.version = input.readString();
skeletonData.x = input.readFloat();
skeletonData.y = input.readFloat();
skeletonData.width = input.readFloat();
skeletonData.height = input.readFloat();
skeletonData.referenceScale = input.readFloat() * scale;
let nonessential = input.readBoolean();
if (nonessential) {
skeletonData.fps = input.readFloat();
skeletonData.imagesPath = input.readString();
skeletonData.audioPath = input.readString();
}
let n = 0;
n = input.readInt(true);
for (let i = 0; i < n; i++) {
let str = input.readString();
if (!str)
throw new Error("String in string table must not be null.");
input.strings.push(str);
}
n = input.readInt(true);
for (let i = 0; i < n; i++) {
let name = input.readString();
if (!name)
throw new Error("Bone name must not be null.");
let parent = i == 0 ? null : skeletonData.bones[input.readInt(true)];
let data = new BoneData(i, name, parent);
data.rotation = input.readFloat();
data.x = input.readFloat() * scale;
data.y = input.readFloat() * scale;
data.scaleX = input.readFloat();
data.scaleY = input.readFloat();
data.shearX = input.readFloat();
data.shearY = input.readFloat();
data.length = input.readFloat() * scale;
data.inherit = input.readByte();
data.skinRequired = input.readBoolean();
if (nonessential) {
Color.rgba8888ToColor(data.color, input.readInt32());
data.icon = input.readString() ?? void 0;
data.visible = input.readBoolean();
}
skeletonData.bones.push(data);
}
n = input.readInt(true);
for (let i = 0; i < n; i++) {
let slotName = input.readString();
if (!slotName)
throw new Error("Slot name must not be null.");
let boneData = skeletonData.bones[input.readInt(true)];
let data = new SlotData(i, slotName, boneData);
Color.rgba8888ToColor(data.color, input.readInt32());
let darkColor = input.readInt32();
if (darkColor != -1)
Color.rgb888ToColor(data.darkColor = new Color(), darkColor);
data.attachmentName = input.readStringRef();
data.blendMode = input.readInt(true);
if (nonessential)
data.visible = input.readBoolean();
skeletonData.slots.push(data);
}
n = input.readInt(true);
for (let i = 0, nn; i < n; i++) {
let name = input.readString();
if (!name)
throw new Error("IK constraint data name must not be null.");
let data = new IkConstraintData(name);
data.order = input.readInt(true);
nn = input.readInt(true);
for (let ii = 0; ii < nn; ii++)
data.bones.push(skeletonData.bones[input.readInt(true)]);
data.target = skeletonData.bones[input.readInt(true)];
let flags = input.readByte();
data.skinRequired = (flags & 1) != 0;
data.bendDirection = (flags & 2) != 0 ? 1 : -1;
data.compress = (flags & 4) != 0;
data.stretch = (flags & 8) != 0;
data.uniform = (flags & 16) != 0;
if ((flags & 32) != 0)
data.mix = (flags & 64) != 0 ? input.readFloat() : 1;
if ((flags & 128) != 0)
data.softness = input.readFloat() * scale;
skeletonData.ikConstraints.push(data);
}
n = input.readInt(true);
for (let i = 0, nn; i < n; i++) {
let name = input.readString();
if (!name)
throw new Error("Transform constraint data name must not be null.");
let data = new TransformConstraintData(name);
data.order = input.readInt(true);
nn = input.readInt(true);
for (let ii = 0; ii < nn; ii++)
data.bones.push(skeletonData.bones[input.readInt(true)]);
data.target = skeletonData.bones[input.readInt(true)];
let flags = input.readByte();
data.skinRequired = (flags & 1) != 0;
data.local = (flags & 2) != 0;
data.relative = (flags & 4) != 0;
if ((flags & 8) != 0)
data.offsetRotation = input.readFloat();
if ((flags & 16) != 0)
data.offsetX = input.readFloat() * scale;
if ((flags & 32) != 0)
data.offsetY = input.readFloat() * scale;
if ((flags & 64) != 0)
data.offsetScaleX = input.readFloat();
if ((flags & 128) != 0)
data.offsetScaleY = input.readFloat();
flags = input.readByte();
if ((flags & 1) != 0)
data.offsetShearY = input.readFloat();
if ((flags & 2) != 0)
data.mixRotate = input.readFloat();
if ((flags & 4) != 0)
data.mixX = input.readFloat();
if ((flags & 8) != 0)
data.mixY = input.readFloat();
if ((flags & 16) != 0)
data.mixScaleX = input.readFloat();
if ((flags & 32) != 0)
data.mixScaleY = input.readFloat();
if ((flags & 64) != 0)
data.mixShearY = input.readFloat();
skeletonData.transformConstraints.push(data);
}
n = input.readInt(true);
for (let i = 0, nn; i < n; i++) {
let name = input.readString();
if (!name)
throw new Error("Path constraint data name must not be null.");
let data = new PathConstraintData(name);
data.order = input.readInt(true);
data.skinRequired = input.readBoolean();
nn = input.readInt(true);
for (let ii = 0; ii < nn; ii++)
data.bones.push(skeletonData.bones[input.readInt(true)]);
data.target = skeletonData.slots[input.readInt(true)];
const flags = input.readByte();
data.positionMode = flags & 1;
data.spacingMode = flags >> 1 & 3;
data.rotateMode = flags >> 3 & 3;
if ((flags & 128) != 0)
data.offsetRotation = input.readFloat();
data.position = input.readFloat();
if (data.positionMode == 0 /* Fixed */)
data.position *= scale;
data.spacing = input.readFloat();
if (data.spacingMode == 0 /* Length */ || data.spacingMode == 1 /* Fixed */)
data.spacing *= scale;
data.mixRotate = input.readFloat();
data.mixX = input.readFloat();
data.mixY = input.readFloat();
skeletonData.pathConstraints.push(data);
}
n = input.readInt(true);
for (let i = 0, nn; i < n; i++) {
const name = input.readString();
if (!name)
throw new Error("Physics constraint data name must not be null.");
const data = new PhysicsConstraintData(name);
data.order = input.readInt(true);
data.bone = skeletonData.bones[input.readInt(true)];
let flags = input.readByte();
data.skinRequired = (flags & 1) != 0;
if ((flags & 2) != 0)
data.x = input.readFloat();
if ((flags & 4) != 0)
data.y = input.readFloat();
if ((flags & 8) != 0)
data.rotate = input.readFloat();
if ((flags & 16) != 0)
data.scaleX = input.readFloat();
if ((flags & 32) != 0)
data.shearX = input.readFloat();
data.limit = ((flags & 64) != 0 ? input.readFloat() : 5e3) * scale;
data.step = 1 / input.readUnsignedByte();
data.inertia = input.readFloat();
data.strength = input.readFloat();
data.damping = input.readFloat();
data.massInverse = (flags & 128) != 0 ? input.readFloat() : 1;
data.wind = input.readFloat();
data.gravity = input.readFloat();
flags = input.readByte();
if ((flags & 1) != 0)
data.inertiaGlobal = true;
if ((flags & 2) != 0)
data.strengthGlobal = true;
if ((flags & 4) != 0)
data.dampingGlobal = true;
if ((flags & 8) != 0)
data.massGlobal = true;
if ((flags & 16) != 0)
data.windGlobal = true;
if ((flags & 32) != 0)
data.gravityGlobal = true;
if ((flags & 64) != 0)
data.mixGlobal = true;
data.mix = (flags & 128) != 0 ? input.readFloat() : 1;
skeletonData.physicsConstraints.push(data);
}
let defaultSkin = this.readSkin(input, skeletonData, true, nonessential);
if (defaultSkin) {
skeletonData.defaultSkin = defaultSkin;
skeletonData.skins.push(defaultSkin);
}
{
let i = skeletonData.skins.length;
Utils.setArraySize(skeletonData.skins, n = i + input.readInt(true));
for (; i < n; i++) {
let skin = this.readSkin(input, skeletonData, false, nonessential);
if (!skin)
throw new Error("readSkin() should not have returned null.");
skeletonData.skins[i] = skin;
}
}
n = this.linkedMeshes.length;
for (let i = 0; i < n; i++) {
let linkedMesh = this.linkedMeshes[i];
const skin = skeletonData.skins[linkedMesh.skinIndex];
if (!linkedMesh.parent)
throw new Error("Linked mesh parent must not be null");
let parent = skin.getAttachment(linkedMesh.slotIndex, linkedMesh.parent);
if (!parent)
throw new Error(`Parent mesh not found: ${linkedMesh.parent}`);
linkedMesh.mesh.timelineAttachment = linkedMesh.inheritTimeline ? parent : linkedMesh.mesh;
linkedMesh.mesh.setParentMesh(parent);
if (linkedMesh.mesh.region != null)
linkedMesh.mesh.updateRegion();
}
this.linkedMeshes.length = 0;
n = input.readInt(true);
for (let i = 0; i < n; i++) {
let eventName = input.readString();
if (!eventName)
throw new Error("Event data name must not be null");
let data = new EventData(eventName);
data.intValue = input.readInt(false);
data.floatValue = input.readFloat();
data.stringValue = input.readString();
data.audioPath = input.readString();
if (data.audioPath) {
data.volume = input.readFloat();
data.balance = input.readFloat();
}
skeletonData.events.push(data);
}
n = input.readInt(true);
for (let i = 0; i < n; i++) {
let animationName = input.readString();
if (!animationName)
throw new Error("Animatio name must not be null.");
skeletonData.animations.push(this.readAnimation(input, animationName, skeletonData));
}
return skeletonData;
}
readSkin(input, skeletonData, defaultSkin, nonessential) {
let skin = null;
let slotCount = 0;
if (defaultSkin) {
slotCount = input.readInt(true);
if (slotCount == 0)
return null;
skin = new Skin("default");
} else {
let skinName = input.readString();
if (!skinName)
throw new Error("Skin name must not be null.");
skin = new Skin(skinName);
if (nonessential)
Color.rgba8888ToColor(skin.color, input.readInt32());
skin.bones.length = input.readInt(true);
for (let i = 0, n = skin.bones.length; i < n; i++)
skin.bones[i] = skeletonData.bones[input.readInt(true)];
for (let i = 0, n = input.readInt(true); i < n; i++)
skin.constraints.push(skeletonData.ikConstraints[input.readInt(true)]);
for (let i = 0, n = input.readInt(true); i < n; i++)
skin.constraints.push(skeletonData.transformConstraints[input.readInt(true)]);
for (let i = 0, n = input.readInt(true); i < n; i++)
skin.constraints.push(skeletonData.pathConstraints[input.readInt(true)]);
for (let i = 0, n = input.readInt(true); i < n; i++)
skin.constraints.push(skeletonData.physicsConstraints[input.readInt(true)]);
slotCount = input.readInt(true);
}
for (let i = 0; i < slotCount; i++) {
let slotIndex = input.readInt(true);
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
let name = input.readStringRef();
if (!name)
throw new Error("Attachment name must not be null");
let attachment = this.readAttachment(input, skeletonData, skin, slotIndex, name, nonessential);
if (attachment)
skin.setAttachment(slotIndex, name, attachment);
}
}
return skin;
}
readAttachment(input, skeletonData, skin, slotIndex, attachmentName, nonessential) {
let scale = this.scale;
let flags = input.readByte();
const name = (flags & 8) != 0 ? input.readStringRef() : attachmentName;
if (!name)
throw new Error("Attachment name must not be null");
switch (flags & 7) {
case AttachmentType.Region: {
let path = (flags & 16) != 0 ? input.readStringRef() : null;
const color = (flags & 32) != 0 ? input.readInt32() : 4294967295;
const sequence = (flags & 64) != 0 ? this.readSequence(input) : null;
let rotation = (flags & 128) != 0 ? input.readFloat() : 0;
let x = input.readFloat();
let y = input.readFloat();
let scaleX = input.readFloat();
let scaleY = input.readFloat();
let width = input.readFloat();
let height = input.readFloat();
if (!path)
path = name;
let region = this.attachmentLoader.newRegionAttachment(skin, name, path, sequence);
if (!region)
return null;
region.path = path;
region.x = x * scale;
region.y = y * scale;
region.scaleX = scaleX;
region.scaleY = scaleY;
region.rotation = rotation;
region.width = width * scale;
region.height = height * scale;
Color.rgba8888ToColor(region.color, color);
region.sequence = sequence;
if (sequence == null)
region.updateRegion();
return region;
}
case AttachmentType.BoundingBox: {
let vertices = this.readVertices(input, (flags & 16) != 0);
let color = nonessential ? input.readInt32() : 0;
let box = this.attachmentLoader.newBoundingBoxAttachment(skin, name);
if (!box)
return null;
box.worldVerticesLength = vertices.length;
box.vertices = vertices.vertices;
box.bones = vertices.bones;
if (nonessential)
Color.rgba8888ToColor(box.color, color);
return box;
}
case AttachmentType.Mesh: {
let path = (flags & 16) != 0 ? input.readStringRef() : name;
const color = (flags & 32) != 0 ? input.readInt32() : 4294967295;
const sequence = (flags & 64) != 0 ? this.readSequence(input) : null;
const hullLength = input.readInt(true);
const vertices = this.readVertices(input, (flags & 128) != 0);
const uvs = this.readFloatArray(input, vertices.length, 1);
const triangles = this.readShortArray(input, (vertices.length - hullLength - 2) * 3);
let edges = [];
let width = 0, height = 0;
if (nonessential) {
edges = this.readShortArray(input, input.readInt(true));
width = input.readFloat();
height = input.readFloat();
}
if (!path)
path = name;
let mesh = this.attachmentLoader.newMeshAttachment(skin, name, path, sequence);
if (!mesh)
return null;
mesh.path = path;
Color.rgba8888ToColor(mesh.color, color);
mesh.bones = vertices.bones;
mesh.vertices = vertices.vertices;
mesh.worldVerticesLength = vertices.length;
mesh.triangles = triangles;
mesh.regionUVs = uvs;
if (sequence == null)
mesh.updateRegion();
mesh.hullLength = hullLength << 1;
mesh.sequence = sequence;
if (nonessential) {
mesh.edges = edges;
mesh.width = width * scale;
mesh.height = height * scale;
}
return mesh;
}
case AttachmentType.LinkedMesh: {
const path = (flags & 16) != 0 ? input.readStringRef() : name;
if (path == null)
throw new Error("Path of linked mesh must not be null");
const color = (flags & 32) != 0 ? input.readInt32() : 4294967295;
const sequence = (flags & 64) != 0 ? this.readSequence(input) : null;
const inheritTimelines = (flags & 128) != 0;
const skinIndex = input.readInt(true);
const parent = input.readStringRef();
let width = 0, height = 0;
if (nonessential) {
width = input.readFloat();
height = input.readFloat();
}
let mesh = this.attachmentLoader.newMeshAttachment(skin, name, path, sequence);
if (!mesh)
return null;
mesh.path = path;
Color.rgba8888ToColor(mesh.color, color);
mesh.sequence = sequence;
if (nonessential) {
mesh.width = width * scale;
mesh.height = height * scale;
}
this.linkedMeshes.push(new LinkedMesh(mesh, skinIndex, slotIndex, parent, inheritTimelines));
return mesh;
}
case AttachmentType.Path: {
const closed2 = (flags & 16) != 0;
const constantSpeed = (flags & 32) != 0;
const vertices = this.readVertices(input, (flags & 64) != 0);
const lengths = Utils.newArray(vertices.length / 6, 0);
for (let i = 0, n = lengths.length; i < n; i++)
lengths[i] = input.readFloat() * scale;
const color = nonessential ? input.readInt32() : 0;
const path = this.attachmentLoader.newPathAttachment(skin, name);
if (!path)
return null;
path.closed = closed2;
path.constantSpeed = constantSpeed;
path.worldVerticesLength = vertices.length;
path.vertices = vertices.vertices;
path.bones = vertices.bones;
path.lengths = lengths;
if (nonessential)
Color.rgba8888ToColor(path.color, color);
return path;
}
case AttachmentType.Point: {
const rotation = input.readFloat();
const x = input.readFloat();
const y = input.readFloat();
const color = nonessential ? input.readInt32() : 0;
const point = this.attachmentLoader.newPointAttachment(skin, name);
if (!point)
return null;
point.x = x * scale;
point.y = y * scale;
point.rotation = rotation;
if (nonessential)
Color.rgba8888ToColor(point.color, color);
return point;
}
case AttachmentType.Clipping: {
const endSlotIndex = input.readInt(true);
const vertices = this.readVertices(input, (flags & 16) != 0);
let color = nonessential ? input.readInt32() : 0;
let clip = this.attachmentLoader.newClippingAttachment(skin, name);
if (!clip)
return null;
clip.endSlot = skeletonData.slots[endSlotIndex];
clip.worldVerticesLength = vertices.length;
clip.vertices = vertices.vertices;
clip.bones = vertices.bones;
if (nonessential)
Color.rgba8888ToColor(clip.color, color);
return clip;
}
}
return null;
}
readSequence(input) {
let sequence = new Sequence(input.readInt(true));
sequence.start = input.readInt(true);
sequence.digits = input.readInt(true);
sequence.setupIndex = input.readInt(true);
return sequence;
}
readVertices(input, weighted) {
const scale = this.scale;
const vertexCount = input.readInt(true);
const vertices = new Vertices();
vertices.length = vertexCount << 1;
if (!weighted) {
vertices.vertices = this.readFloatArray(input, vertices.length, scale);
return vertices;
}
let weights = new Array();
let bonesArray = new Array();
for (let i = 0; i < vertexCount; i++) {
let boneCount = input.readInt(true);
bonesArray.push(boneCount);
for (let ii = 0; ii < boneCount; ii++) {
bonesArray.push(input.readInt(true));
weights.push(input.readFloat() * scale);
weights.push(input.readFloat() * scale);
weights.push(input.readFloat());
}
}
vertices.vertices = Utils.toFloatArray(weights);
vertices.bones = bonesArray;
return vertices;
}
readFloatArray(input, n, scale) {
let array = new Array(n);
if (scale == 1) {
for (let i = 0; i < n; i++)
array[i] = input.readFloat();
} else {
for (let i = 0; i < n; i++)
array[i] = input.readFloat() * scale;
}
return array;
}
readShortArray(input, n) {
let array = new Array(n);
for (let i = 0; i < n; i++)
array[i] = input.readInt(true);
return array;
}
readAnimation(input, name, skeletonData) {
input.readInt(true);
let timelines = new Array();
let scale = this.scale;
for (let i = 0, n = input.readInt(true); i < n; i++) {
let slotIndex = input.readInt(true);
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
let timelineType = input.readByte();
let frameCount = input.readInt(true);
let frameLast = frameCount - 1;
switch (timelineType) {
case SLOT_ATTACHMENT: {
let timeline = new AttachmentTimeline(frameCount, slotIndex);
for (let frame = 0; frame < frameCount; frame++)
timeline.setFrame(frame, input.readFloat(), input.readStringRef());
timelines.push(timeline);
break;
}
case SLOT_RGBA: {
let bezierCount = input.readInt(true);
let timeline = new RGBATimeline(frameCount, bezierCount, slotIndex);
let time = input.readFloat();
let r = input.readUnsignedByte() / 255;
let g = input.readUnsignedByte() / 255;
let b = input.readUnsignedByte() / 255;
let a = input.readUnsignedByte() / 255;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, r, g, b, a);
if (frame == frameLast)
break;
let time2 = input.readFloat();
let r2 = input.readUnsignedByte() / 255;
let g2 = input.readUnsignedByte() / 255;
let b2 = input.readUnsignedByte() / 255;
let a2 = input.readUnsignedByte() / 255;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, r, r2, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, g, g2, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, b, b2, 1);
setBezier(input, timeline, bezier++, frame, 3, time, time2, a, a2, 1);
}
time = time2;
r = r2;
g = g2;
b = b2;
a = a2;
}
timelines.push(timeline);
break;
}
case SLOT_RGB: {
let bezierCount = input.readInt(true);
let timeline = new RGBTimeline(frameCount, bezierCount, slotIndex);
let time = input.readFloat();
let r = input.readUnsignedByte() / 255;
let g = input.readUnsignedByte() / 255;
let b = input.readUnsignedByte() / 255;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, r, g, b);
if (frame == frameLast)
break;
let time2 = input.readFloat();
let r2 = input.readUnsignedByte() / 255;
let g2 = input.readUnsignedByte() / 255;
let b2 = input.readUnsignedByte() / 255;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, r, r2, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, g, g2, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, b, b2, 1);
}
time = time2;
r = r2;
g = g2;
b = b2;
}
timelines.push(timeline);
break;
}
case SLOT_RGBA2: {
let bezierCount = input.readInt(true);
let timeline = new RGBA2Timeline(frameCount, bezierCount, slotIndex);
let time = input.readFloat();
let r = input.readUnsignedByte() / 255;
let g = input.readUnsignedByte() / 255;
let b = input.readUnsignedByte() / 255;
let a = input.readUnsignedByte() / 255;
let r2 = input.readUnsignedByte() / 255;
let g2 = input.readUnsignedByte() / 255;
let b2 = input.readUnsignedByte() / 255;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, r, g, b, a, r2, g2, b2);
if (frame == frameLast)
break;
let time2 = input.readFloat();
let nr = input.readUnsignedByte() / 255;
let ng = input.readUnsignedByte() / 255;
let nb = input.readUnsignedByte() / 255;
let na = input.readUnsignedByte() / 255;
let nr2 = input.readUnsignedByte() / 255;
let ng2 = input.readUnsignedByte() / 255;
let nb2 = input.readUnsignedByte() / 255;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, r, nr, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, g, ng, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, b, nb, 1);
setBezier(input, timeline, bezier++, frame, 3, time, time2, a, na, 1);
setBezier(input, timeline, bezier++, frame, 4, time, time2, r2, nr2, 1);
setBezier(input, timeline, bezier++, frame, 5, time, time2, g2, ng2, 1);
setBezier(input, timeline, bezier++, frame, 6, time, time2, b2, nb2, 1);
}
time = time2;
r = nr;
g = ng;
b = nb;
a = na;
r2 = nr2;
g2 = ng2;
b2 = nb2;
}
timelines.push(timeline);
break;
}
case SLOT_RGB2: {
let bezierCount = input.readInt(true);
let timeline = new RGB2Timeline(frameCount, bezierCount, slotIndex);
let time = input.readFloat();
let r = input.readUnsignedByte() / 255;
let g = input.readUnsignedByte() / 255;
let b = input.readUnsignedByte() / 255;
let r2 = input.readUnsignedByte() / 255;
let g2 = input.readUnsignedByte() / 255;
let b2 = input.readUnsignedByte() / 255;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, r, g, b, r2, g2, b2);
if (frame == frameLast)
break;
let time2 = input.readFloat();
let nr = input.readUnsignedByte() / 255;
let ng = input.readUnsignedByte() / 255;
let nb = input.readUnsignedByte() / 255;
let nr2 = input.readUnsignedByte() / 255;
let ng2 = input.readUnsignedByte() / 255;
let nb2 = input.readUnsignedByte() / 255;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, r, nr, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, g, ng, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, b, nb, 1);
setBezier(input, timeline, bezier++, frame, 3, time, time2, r2, nr2, 1);
setBezier(input, timeline, bezier++, frame, 4, time, time2, g2, ng2, 1);
setBezier(input, timeline, bezier++, frame, 5, time, time2, b2, nb2, 1);
}
time = time2;
r = nr;
g = ng;
b = nb;
r2 = nr2;
g2 = ng2;
b2 = nb2;
}
timelines.push(timeline);
break;
}
case SLOT_ALPHA: {
let timeline = new AlphaTimeline(frameCount, input.readInt(true), slotIndex);
let time = input.readFloat(), a = input.readUnsignedByte() / 255;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, a);
if (frame == frameLast)
break;
let time2 = input.readFloat();
let a2 = input.readUnsignedByte() / 255;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, a, a2, 1);
}
time = time2;
a = a2;
}
timelines.push(timeline);
}
}
}
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
let boneIndex = input.readInt(true);
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
let type = input.readByte(), frameCount = input.readInt(true);
if (type == BONE_INHERIT) {
let timeline = new InheritTimeline(frameCount, boneIndex);
for (let frame = 0; frame < frameCount; frame++) {
timeline.setFrame(frame, input.readFloat(), input.readByte());
}
timelines.push(timeline);
continue;
}
let bezierCount = input.readInt(true);
switch (type) {
case BONE_ROTATE:
timelines.push(readTimeline1(input, new RotateTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_TRANSLATE:
timelines.push(readTimeline2(input, new TranslateTimeline(frameCount, bezierCount, boneIndex), scale));
break;
case BONE_TRANSLATEX:
timelines.push(readTimeline1(input, new TranslateXTimeline(frameCount, bezierCount, boneIndex), scale));
break;
case BONE_TRANSLATEY:
timelines.push(readTimeline1(input, new TranslateYTimeline(frameCount, bezierCount, boneIndex), scale));
break;
case BONE_SCALE:
timelines.push(readTimeline2(input, new ScaleTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_SCALEX:
timelines.push(readTimeline1(input, new ScaleXTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_SCALEY:
timelines.push(readTimeline1(input, new ScaleYTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_SHEAR:
timelines.push(readTimeline2(input, new ShearTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_SHEARX:
timelines.push(readTimeline1(input, new ShearXTimeline(frameCount, bezierCount, boneIndex), 1));
break;
case BONE_SHEARY:
timelines.push(readTimeline1(input, new ShearYTimeline(frameCount, bezierCount, boneIndex), 1));
}
}
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
let index = input.readInt(true), frameCount = input.readInt(true), frameLast = frameCount - 1;
let timeline = new IkConstraintTimeline(frameCount, input.readInt(true), index);
let flags = input.readByte();
let time = input.readFloat(), mix = (flags & 1) != 0 ? (flags & 2) != 0 ? input.readFloat() : 1 : 0;
let softness = (flags & 4) != 0 ? input.readFloat() * scale : 0;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, mix, softness, (flags & 8) != 0 ? 1 : -1, (flags & 16) != 0, (flags & 32) != 0);
if (frame == frameLast)
break;
flags = input.readByte();
const time2 = input.readFloat(), mix2 = (flags & 1) != 0 ? (flags & 2) != 0 ? input.readFloat() : 1 : 0;
const softness2 = (flags & 4) != 0 ? input.readFloat() * scale : 0;
if ((flags & 64) != 0) {
timeline.setStepped(frame);
} else if ((flags & 128) != 0) {
setBezier(input, timeline, bezier++, frame, 0, time, time2, mix, mix2, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, softness, softness2, scale);
}
time = time2;
mix = mix2;
softness = softness2;
}
timelines.push(timeline);
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
let index = input.readInt(true), frameCount = input.readInt(true), frameLast = frameCount - 1;
let timeline = new TransformConstraintTimeline(frameCount, input.readInt(true), index);
let time = input.readFloat(), mixRotate = input.readFloat(), mixX = input.readFloat(), mixY = input.readFloat(), mixScaleX = input.readFloat(), mixScaleY = input.readFloat(), mixShearY = input.readFloat();
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY);
if (frame == frameLast)
break;
let time2 = input.readFloat(), mixRotate2 = input.readFloat(), mixX2 = input.readFloat(), mixY2 = input.readFloat(), mixScaleX2 = input.readFloat(), mixScaleY2 = input.readFloat(), mixShearY2 = input.readFloat();
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, mixRotate, mixRotate2, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, mixX, mixX2, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, mixY, mixY2, 1);
setBezier(input, timeline, bezier++, frame, 3, time, time2, mixScaleX, mixScaleX2, 1);
setBezier(input, timeline, bezier++, frame, 4, time, time2, mixScaleY, mixScaleY2, 1);
setBezier(input, timeline, bezier++, frame, 5, time, time2, mixShearY, mixShearY2, 1);
}
time = time2;
mixRotate = mixRotate2;
mixX = mixX2;
mixY = mixY2;
mixScaleX = mixScaleX2;
mixScaleY = mixScaleY2;
mixShearY = mixShearY2;
}
timelines.push(timeline);
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
let index = input.readInt(true);
let data = skeletonData.pathConstraints[index];
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
const type = input.readByte(), frameCount = input.readInt(true), bezierCount = input.readInt(true);
switch (type) {
case PATH_POSITION:
timelines.push(readTimeline1(
input,
new PathConstraintPositionTimeline(frameCount, bezierCount, index),
data.positionMode == 0 /* Fixed */ ? scale : 1
));
break;
case PATH_SPACING:
timelines.push(readTimeline1(
input,
new PathConstraintSpacingTimeline(frameCount, bezierCount, index),
data.spacingMode == 0 /* Length */ || data.spacingMode == 1 /* Fixed */ ? scale : 1
));
break;
case PATH_MIX:
let timeline = new PathConstraintMixTimeline(frameCount, bezierCount, index);
let time = input.readFloat(), mixRotate = input.readFloat(), mixX = input.readFloat(), mixY = input.readFloat();
for (let frame = 0, bezier = 0, frameLast = timeline.getFrameCount() - 1; ; frame++) {
timeline.setFrame(frame, time, mixRotate, mixX, mixY);
if (frame == frameLast)
break;
let time2 = input.readFloat(), mixRotate2 = input.readFloat(), mixX2 = input.readFloat(), mixY2 = input.readFloat();
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, mixRotate, mixRotate2, 1);
setBezier(input, timeline, bezier++, frame, 1, time, time2, mixX, mixX2, 1);
setBezier(input, timeline, bezier++, frame, 2, time, time2, mixY, mixY2, 1);
}
time = time2;
mixRotate = mixRotate2;
mixX = mixX2;
mixY = mixY2;
}
timelines.push(timeline);
}
}
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
const index = input.readInt(true) - 1;
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
const type = input.readByte(), frameCount = input.readInt(true);
if (type == PHYSICS_RESET) {
const timeline = new PhysicsConstraintResetTimeline(frameCount, index);
for (let frame = 0; frame < frameCount; frame++)
timeline.setFrame(frame, input.readFloat());
timelines.push(timeline);
continue;
}
const bezierCount = input.readInt(true);
switch (type) {
case PHYSICS_INERTIA:
timelines.push(readTimeline1(input, new PhysicsConstraintInertiaTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_STRENGTH:
timelines.push(readTimeline1(input, new PhysicsConstraintStrengthTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_DAMPING:
timelines.push(readTimeline1(input, new PhysicsConstraintDampingTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_MASS:
timelines.push(readTimeline1(input, new PhysicsConstraintMassTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_WIND:
timelines.push(readTimeline1(input, new PhysicsConstraintWindTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_GRAVITY:
timelines.push(readTimeline1(input, new PhysicsConstraintGravityTimeline(frameCount, bezierCount, index), 1));
break;
case PHYSICS_MIX:
timelines.push(readTimeline1(input, new PhysicsConstraintMixTimeline(frameCount, bezierCount, index), 1));
}
}
}
for (let i = 0, n = input.readInt(true); i < n; i++) {
let skin = skeletonData.skins[input.readInt(true)];
for (let ii = 0, nn = input.readInt(true); ii < nn; ii++) {
let slotIndex = input.readInt(true);
for (let iii = 0, nnn = input.readInt(true); iii < nnn; iii++) {
let attachmentName = input.readStringRef();
if (!attachmentName)
throw new Error("attachmentName must not be null.");
let attachment = skin.getAttachment(slotIndex, attachmentName);
let timelineType = input.readByte();
let frameCount = input.readInt(true);
let frameLast = frameCount - 1;
switch (timelineType) {
case ATTACHMENT_DEFORM: {
let vertexAttachment = attachment;
let weighted = vertexAttachment.bones;
let vertices = vertexAttachment.vertices;
let deformLength = weighted ? vertices.length / 3 * 2 : vertices.length;
let bezierCount = input.readInt(true);
let timeline = new DeformTimeline(frameCount, bezierCount, slotIndex, vertexAttachment);
let time = input.readFloat();
for (let frame = 0, bezier = 0; ; frame++) {
let deform;
let end = input.readInt(true);
if (end == 0)
deform = weighted ? Utils.newFloatArray(deformLength) : vertices;
else {
deform = Utils.newFloatArray(deformLength);
let start = input.readInt(true);
end += start;
if (scale == 1) {
for (let v = start; v < end; v++)
deform[v] = input.readFloat();
} else {
for (let v = start; v < end; v++)
deform[v] = input.readFloat() * scale;
}
if (!weighted) {
for (let v = 0, vn = deform.length; v < vn; v++)
deform[v] += vertices[v];
}
}
timeline.setFrame(frame, time, deform);
if (frame == frameLast)
break;
let time2 = input.readFloat();
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, 0, 1, 1);
}
time = time2;
}
timelines.push(timeline);
break;
}
case ATTACHMENT_SEQUENCE: {
let timeline = new SequenceTimeline(frameCount, slotIndex, attachment);
for (let frame = 0; frame < frameCount; frame++) {
let time = input.readFloat();
let modeAndIndex = input.readInt32();
timeline.setFrame(
frame,
time,
SequenceModeValues[modeAndIndex & 15],
modeAndIndex >> 4,
input.readFloat()
);
}
timelines.push(timeline);
break;
}
}
}
}
}
let drawOrderCount = input.readInt(true);
if (drawOrderCount > 0) {
let timeline = new DrawOrderTimeline(drawOrderCount);
let slotCount = skeletonData.slots.length;
for (let i = 0; i < drawOrderCount; i++) {
let time = input.readFloat();
let offsetCount = input.readInt(true);
let drawOrder = Utils.newArray(slotCount, 0);
for (let ii = slotCount - 1; ii >= 0; ii--)
drawOrder[ii] = -1;
let unchanged = Utils.newArray(slotCount - offsetCount, 0);
let originalIndex = 0, unchangedIndex = 0;
for (let ii = 0; ii < offsetCount; ii++) {
let slotIndex = input.readInt(true);
while (originalIndex != slotIndex)
unchanged[unchangedIndex++] = originalIndex++;
drawOrder[originalIndex + input.readInt(true)] = originalIndex++;
}
while (originalIndex < slotCount)
unchanged[unchangedIndex++] = originalIndex++;
for (let ii = slotCount - 1; ii >= 0; ii--)
if (drawOrder[ii] == -1)
drawOrder[ii] = unchanged[--unchangedIndex];
timeline.setFrame(i, time, drawOrder);
}
timelines.push(timeline);
}
let eventCount = input.readInt(true);
if (eventCount > 0) {
let timeline = new EventTimeline(eventCount);
for (let i = 0; i < eventCount; i++) {
let time = input.readFloat();
let eventData = skeletonData.events[input.readInt(true)];
let event = new Event(time, eventData);
event.intValue = input.readInt(false);
event.floatValue = input.readFloat();
event.stringValue = input.readString();
if (event.stringValue == null)
event.stringValue = eventData.stringValue;
if (event.data.audioPath) {
event.volume = input.readFloat();
event.balance = input.readFloat();
}
timeline.setFrame(i, event);
}
timelines.push(timeline);
}
let duration = 0;
for (let i = 0, n = timelines.length; i < n; i++)
duration = Math.max(duration, timelines[i].getDuration());
return new Animation(name, timelines, duration);
}
};
var BinaryInput = class {
constructor(data, strings = new Array(), index = 0, buffer = new DataView(data instanceof ArrayBuffer ? data : data.buffer)) {
this.strings = strings;
this.index = index;
this.buffer = buffer;
}
readByte() {
return this.buffer.getInt8(this.index++);
}
readUnsignedByte() {
return this.buffer.getUint8(this.index++);
}
readShort() {
let value = this.buffer.getInt16(this.index);
this.index += 2;
return value;
}
readInt32() {
let value = this.buffer.getInt32(this.index);
this.index += 4;
return value;
}
readInt(optimizePositive) {
let b = this.readByte();
let result = b & 127;
if ((b & 128) != 0) {
b = this.readByte();
result |= (b & 127) << 7;
if ((b & 128) != 0) {
b = this.readByte();
result |= (b & 127) << 14;
if ((b & 128) != 0) {
b = this.readByte();
result |= (b & 127) << 21;
if ((b & 128) != 0) {
b = this.readByte();
result |= (b & 127) << 28;
}
}
}
}
return optimizePositive ? result : result >>> 1 ^ -(result & 1);
}
readStringRef() {
let index = this.readInt(true);
return index == 0 ? null : this.strings[index - 1];
}
readString() {
let byteCount = this.readInt(true);
switch (byteCount) {
case 0:
return null;
case 1:
return "";
}
byteCount--;
let chars = "";
let charCount = 0;
for (let i = 0; i < byteCount; ) {
let b = this.readUnsignedByte();
switch (b >> 4) {
case 12:
case 13:
chars += String.fromCharCode((b & 31) << 6 | this.readByte() & 63);
i += 2;
break;
case 14:
chars += String.fromCharCode((b & 15) << 12 | (this.readByte() & 63) << 6 | this.readByte() & 63);
i += 3;
break;
default:
chars += String.fromCharCode(b);
i++;
}
}
return chars;
}
readFloat() {
let value = this.buffer.getFloat32(this.index);
this.index += 4;
return value;
}
readBoolean() {
return this.readByte() != 0;
}
};
var LinkedMesh = class {
parent;
skinIndex;
slotIndex;
mesh;
inheritTimeline;
constructor(mesh, skinIndex, slotIndex, parent, inheritDeform) {
this.mesh = mesh;
this.skinIndex = skinIndex;
this.slotIndex = slotIndex;
this.parent = parent;
this.inheritTimeline = inheritDeform;
}
};
var Vertices = class {
constructor(bones = null, vertices = null, length = 0) {
this.bones = bones;
this.vertices = vertices;
this.length = length;
}
};
var AttachmentType = /* @__PURE__ */ ((AttachmentType2) => {
AttachmentType2[AttachmentType2["Region"] = 0] = "Region";
AttachmentType2[AttachmentType2["BoundingBox"] = 1] = "BoundingBox";
AttachmentType2[AttachmentType2["Mesh"] = 2] = "Mesh";
AttachmentType2[AttachmentType2["LinkedMesh"] = 3] = "LinkedMesh";
AttachmentType2[AttachmentType2["Path"] = 4] = "Path";
AttachmentType2[AttachmentType2["Point"] = 5] = "Point";
AttachmentType2[AttachmentType2["Clipping"] = 6] = "Clipping";
return AttachmentType2;
})(AttachmentType || {});
function readTimeline1(input, timeline, scale) {
let time = input.readFloat(), value = input.readFloat() * scale;
for (let frame = 0, bezier = 0, frameLast = timeline.getFrameCount() - 1; ; frame++) {
timeline.setFrame(frame, time, value);
if (frame == frameLast)
break;
let time2 = input.readFloat(), value2 = input.readFloat() * scale;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, value, value2, scale);
}
time = time2;
value = value2;
}
return timeline;
}
function readTimeline2(input, timeline, scale) {
let time = input.readFloat(), value1 = input.readFloat() * scale, value2 = input.readFloat() * scale;
for (let frame = 0, bezier = 0, frameLast = timeline.getFrameCount() - 1; ; frame++) {
timeline.setFrame(frame, time, value1, value2);
if (frame == frameLast)
break;
let time2 = input.readFloat(), nvalue1 = input.readFloat() * scale, nvalue2 = input.readFloat() * scale;
switch (input.readByte()) {
case CURVE_STEPPED:
timeline.setStepped(frame);
break;
case CURVE_BEZIER:
setBezier(input, timeline, bezier++, frame, 0, time, time2, value1, nvalue1, scale);
setBezier(input, timeline, bezier++, frame, 1, time, time2, value2, nvalue2, scale);
}
time = time2;
value1 = nvalue1;
value2 = nvalue2;
}
return timeline;
}
function setBezier(input, timeline, bezier, frame, value, time1, time2, value1, value2, scale) {
timeline.setBezier(bezier, frame, value, time1, value1, input.readFloat(), input.readFloat() * scale, input.readFloat(), input.readFloat() * scale, time2, value2);
}
var BONE_ROTATE = 0;
var BONE_TRANSLATE = 1;
var BONE_TRANSLATEX = 2;
var BONE_TRANSLATEY = 3;
var BONE_SCALE = 4;
var BONE_SCALEX = 5;
var BONE_SCALEY = 6;
var BONE_SHEAR = 7;
var BONE_SHEARX = 8;
var BONE_SHEARY = 9;
var BONE_INHERIT = 10;
var SLOT_ATTACHMENT = 0;
var SLOT_RGBA = 1;
var SLOT_RGB = 2;
var SLOT_RGBA2 = 3;
var SLOT_RGB2 = 4;
var SLOT_ALPHA = 5;
var ATTACHMENT_DEFORM = 0;
var ATTACHMENT_SEQUENCE = 1;
var PATH_POSITION = 0;
var PATH_SPACING = 1;
var PATH_MIX = 2;
var PHYSICS_INERTIA = 0;
var PHYSICS_STRENGTH = 1;
var PHYSICS_DAMPING = 2;
var PHYSICS_MASS = 4;
var PHYSICS_WIND = 5;
var PHYSICS_GRAVITY = 6;
var PHYSICS_MIX = 7;
var PHYSICS_RESET = 8;
var CURVE_STEPPED = 1;
var CURVE_BEZIER = 2;
// spine-core/src/SkeletonBounds.ts
var SkeletonBounds = class {
/** The left edge of the axis aligned bounding box. */
minX = 0;
/** The bottom edge of the axis aligned bounding box. */
minY = 0;
/** The right edge of the axis aligned bounding box. */
maxX = 0;
/** The top edge of the axis aligned bounding box. */
maxY = 0;
/** The visible bounding boxes. */
boundingBoxes = new Array();
/** The world vertices for the bounding box polygons. */
polygons = new Array();
polygonPool = new Pool(() => {
return Utils.newFloatArray(16);
});
/** Clears any previous polygons, finds all visible bounding box attachments, and computes the world vertices for each bounding
* box's polygon.
* @param updateAabb If true, the axis aligned bounding box containing all the polygons is computed. If false, the
* SkeletonBounds AABB methods will always return true. */
update(skeleton, updateAabb) {
if (!skeleton)
throw new Error("skeleton cannot be null.");
let boundingBoxes = this.boundingBoxes;
let polygons = this.polygons;
let polygonPool = this.polygonPool;
let slots = skeleton.slots;
let slotCount = slots.length;
boundingBoxes.length = 0;
polygonPool.freeAll(polygons);
polygons.length = 0;
for (let i = 0; i < slotCount; i++) {
let slot = slots[i];
if (!slot.bone.active)
continue;
let attachment = slot.getAttachment();
if (attachment instanceof BoundingBoxAttachment) {
let boundingBox = attachment;
boundingBoxes.push(boundingBox);
let polygon = polygonPool.obtain();
if (polygon.length != boundingBox.worldVerticesLength) {
polygon = Utils.newFloatArray(boundingBox.worldVerticesLength);
}
polygons.push(polygon);
boundingBox.computeWorldVertices(slot, 0, boundingBox.worldVerticesLength, polygon, 0, 2);
}
}
if (updateAabb) {
this.aabbCompute();
} else {
this.minX = Number.POSITIVE_INFINITY;
this.minY = Number.POSITIVE_INFINITY;
this.maxX = Number.NEGATIVE_INFINITY;
this.maxY = Number.NEGATIVE_INFINITY;
}
}
aabbCompute() {
let minX = Number.POSITIVE_INFINITY, minY = Number.POSITIVE_INFINITY, maxX = Number.NEGATIVE_INFINITY, maxY = Number.NEGATIVE_INFINITY;
let polygons = this.polygons;
for (let i = 0, n = polygons.length; i < n; i++) {
let polygon = polygons[i];
let vertices = polygon;
for (let ii = 0, nn = polygon.length; ii < nn; ii += 2) {
let x = vertices[ii];
let y = vertices[ii + 1];
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
this.minX = minX;
this.minY = minY;
this.maxX = maxX;
this.maxY = maxY;
}
/** Returns true if the axis aligned bounding box contains the point. */
aabbContainsPoint(x, y) {
return x >= this.minX && x <= this.maxX && y >= this.minY && y <= this.maxY;
}
/** Returns true if the axis aligned bounding box intersects the line segment. */
aabbIntersectsSegment(x1, y1, x2, y2) {
let minX = this.minX;
let minY = this.minY;
let maxX = this.maxX;
let maxY = this.maxY;
if (x1 <= minX && x2 <= minX || y1 <= minY && y2 <= minY || x1 >= maxX && x2 >= maxX || y1 >= maxY && y2 >= maxY)
return false;
let m = (y2 - y1) / (x2 - x1);
let y = m * (minX - x1) + y1;
if (y > minY && y < maxY)
return true;
y = m * (maxX - x1) + y1;
if (y > minY && y < maxY)
return true;
let x = (minY - y1) / m + x1;
if (x > minX && x < maxX)
return true;
x = (maxY - y1) / m + x1;
if (x > minX && x < maxX)
return true;
return false;
}
/** Returns true if the axis aligned bounding box intersects the axis aligned bounding box of the specified bounds. */
aabbIntersectsSkeleton(bounds) {
return this.minX < bounds.maxX && this.maxX > bounds.minX && this.minY < bounds.maxY && this.maxY > bounds.minY;
}
/** Returns the first bounding box attachment that contains the point, or null. When doing many checks, it is usually more
* efficient to only call this method if {@link #aabbContainsPoint(float, float)} returns true. */
containsPoint(x, y) {
let polygons = this.polygons;
for (let i = 0, n = polygons.length; i < n; i++)
if (this.containsPointPolygon(polygons[i], x, y))
return this.boundingBoxes[i];
return null;
}
/** Returns true if the polygon contains the point. */
containsPointPolygon(polygon, x, y) {
let vertices = polygon;
let nn = polygon.length;
let prevIndex = nn - 2;
let inside = false;
for (let ii = 0; ii < nn; ii += 2) {
let vertexY = vertices[ii + 1];
let prevY = vertices[prevIndex + 1];
if (vertexY < y && prevY >= y || prevY < y && vertexY >= y) {
let vertexX = vertices[ii];
if (vertexX + (y - vertexY) / (prevY - vertexY) * (vertices[prevIndex] - vertexX) < x)
inside = !inside;
}
prevIndex = ii;
}
return inside;
}
/** Returns the first bounding box attachment that contains any part of the line segment, or null. When doing many checks, it
* is usually more efficient to only call this method if {@link #aabbIntersectsSegment()} returns
* true. */
intersectsSegment(x1, y1, x2, y2) {
let polygons = this.polygons;
for (let i = 0, n = polygons.length; i < n; i++)
if (this.intersectsSegmentPolygon(polygons[i], x1, y1, x2, y2))
return this.boundingBoxes[i];
return null;
}
/** Returns true if the polygon contains any part of the line segment. */
intersectsSegmentPolygon(polygon, x1, y1, x2, y2) {
let vertices = polygon;
let nn = polygon.length;
let width12 = x1 - x2, height12 = y1 - y2;
let det1 = x1 * y2 - y1 * x2;
let x3 = vertices[nn - 2], y3 = vertices[nn - 1];
for (let ii = 0; ii < nn; ii += 2) {
let x4 = vertices[ii], y4 = vertices[ii + 1];
let det2 = x3 * y4 - y3 * x4;
let width34 = x3 - x4, height34 = y3 - y4;
let det3 = width12 * height34 - height12 * width34;
let x = (det1 * width34 - width12 * det2) / det3;
if ((x >= x3 && x <= x4 || x >= x4 && x <= x3) && (x >= x1 && x <= x2 || x >= x2 && x <= x1)) {
let y = (det1 * height34 - height12 * det2) / det3;
if ((y >= y3 && y <= y4 || y >= y4 && y <= y3) && (y >= y1 && y <= y2 || y >= y2 && y <= y1))
return true;
}
x3 = x4;
y3 = y4;
}
return false;
}
/** Returns the polygon for the specified bounding box, or null. */
getPolygon(boundingBox) {
if (!boundingBox)
throw new Error("boundingBox cannot be null.");
let index = this.boundingBoxes.indexOf(boundingBox);
return index == -1 ? null : this.polygons[index];
}
/** The width of the axis aligned bounding box. */
getWidth() {
return this.maxX - this.minX;
}
/** The height of the axis aligned bounding box. */
getHeight() {
return this.maxY - this.minY;
}
};
// spine-core/src/Triangulator.ts
var Triangulator = class {
convexPolygons = new Array();
convexPolygonsIndices = new Array();
indicesArray = new Array();
isConcaveArray = new Array();
triangles = new Array();
polygonPool = new Pool(() => {
return new Array();
});
polygonIndicesPool = new Pool(() => {
return new Array();
});
triangulate(verticesArray) {
let vertices = verticesArray;
let vertexCount = verticesArray.length >> 1;
let indices = this.indicesArray;
indices.length = 0;
for (let i = 0; i < vertexCount; i++)
indices[i] = i;
let isConcave = this.isConcaveArray;
isConcave.length = 0;
for (let i = 0, n = vertexCount; i < n; ++i)
isConcave[i] = Triangulator.isConcave(i, vertexCount, vertices, indices);
let triangles = this.triangles;
triangles.length = 0;
while (vertexCount > 3) {
let previous = vertexCount - 1, i = 0, next = 1;
while (true) {
outer:
if (!isConcave[i]) {
let p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1;
let p1x = vertices[p1], p1y = vertices[p1 + 1];
let p2x = vertices[p2], p2y = vertices[p2 + 1];
let p3x = vertices[p3], p3y = vertices[p3 + 1];
for (let ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) {
if (!isConcave[ii])
continue;
let v = indices[ii] << 1;
let vx = vertices[v], vy = vertices[v + 1];
if (Triangulator.positiveArea(p3x, p3y, p1x, p1y, vx, vy)) {
if (Triangulator.positiveArea(p1x, p1y, p2x, p2y, vx, vy)) {
if (Triangulator.positiveArea(p2x, p2y, p3x, p3y, vx, vy))
break outer;
}
}
}
break;
}
if (next == 0) {
do {
if (!isConcave[i])
break;
i--;
} while (i > 0);
break;
}
previous = i;
i = next;
next = (next + 1) % vertexCount;
}
triangles.push(indices[(vertexCount + i - 1) % vertexCount]);
triangles.push(indices[i]);
triangles.push(indices[(i + 1) % vertexCount]);
indices.splice(i, 1);
isConcave.splice(i, 1);
vertexCount--;
let previousIndex = (vertexCount + i - 1) % vertexCount;
let nextIndex = i == vertexCount ? 0 : i;
isConcave[previousIndex] = Triangulator.isConcave(previousIndex, vertexCount, vertices, indices);
isConcave[nextIndex] = Triangulator.isConcave(nextIndex, vertexCount, vertices, indices);
}
if (vertexCount == 3) {
triangles.push(indices[2]);
triangles.push(indices[0]);
triangles.push(indices[1]);
}
return triangles;
}
decompose(verticesArray, triangles) {
let vertices = verticesArray;
let convexPolygons = this.convexPolygons;
this.polygonPool.freeAll(convexPolygons);
convexPolygons.length = 0;
let convexPolygonsIndices = this.convexPolygonsIndices;
this.polygonIndicesPool.freeAll(convexPolygonsIndices);
convexPolygonsIndices.length = 0;
let polygonIndices = this.polygonIndicesPool.obtain();
polygonIndices.length = 0;
let polygon = this.polygonPool.obtain();
polygon.length = 0;
let fanBaseIndex = -1, lastWinding = 0;
for (let i = 0, n = triangles.length; i < n; i += 3) {
let t1 = triangles[i] << 1, t2 = triangles[i + 1] << 1, t3 = triangles[i + 2] << 1;
let x1 = vertices[t1], y1 = vertices[t1 + 1];
let x2 = vertices[t2], y2 = vertices[t2 + 1];
let x3 = vertices[t3], y3 = vertices[t3 + 1];
let merged = false;
if (fanBaseIndex == t1) {
let o = polygon.length - 4;
let winding1 = Triangulator.winding(polygon[o], polygon[o + 1], polygon[o + 2], polygon[o + 3], x3, y3);
let winding2 = Triangulator.winding(x3, y3, polygon[0], polygon[1], polygon[2], polygon[3]);
if (winding1 == lastWinding && winding2 == lastWinding) {
polygon.push(x3);
polygon.push(y3);
polygonIndices.push(t3);
merged = true;
}
}
if (!merged) {
if (polygon.length > 0) {
convexPolygons.push(polygon);
convexPolygonsIndices.push(polygonIndices);
} else {
this.polygonPool.free(polygon);
this.polygonIndicesPool.free(polygonIndices);
}
polygon = this.polygonPool.obtain();
polygon.length = 0;
polygon.push(x1);
polygon.push(y1);
polygon.push(x2);
polygon.push(y2);
polygon.push(x3);
polygon.push(y3);
polygonIndices = this.polygonIndicesPool.obtain();
polygonIndices.length = 0;
polygonIndices.push(t1);
polygonIndices.push(t2);
polygonIndices.push(t3);
lastWinding = Triangulator.winding(x1, y1, x2, y2, x3, y3);
fanBaseIndex = t1;
}
}
if (polygon.length > 0) {
convexPolygons.push(polygon);
convexPolygonsIndices.push(polygonIndices);
}
for (let i = 0, n = convexPolygons.length; i < n; i++) {
polygonIndices = convexPolygonsIndices[i];
if (polygonIndices.length == 0)
continue;
let firstIndex = polygonIndices[0];
let lastIndex = polygonIndices[polygonIndices.length - 1];
polygon = convexPolygons[i];
let o = polygon.length - 4;
let prevPrevX = polygon[o], prevPrevY = polygon[o + 1];
let prevX = polygon[o + 2], prevY = polygon[o + 3];
let firstX = polygon[0], firstY = polygon[1];
let secondX = polygon[2], secondY = polygon[3];
let winding = Triangulator.winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY);
for (let ii = 0; ii < n; ii++) {
if (ii == i)
continue;
let otherIndices = convexPolygonsIndices[ii];
if (otherIndices.length != 3)
continue;
let otherFirstIndex = otherIndices[0];
let otherSecondIndex = otherIndices[1];
let otherLastIndex = otherIndices[2];
let otherPoly = convexPolygons[ii];
let x3 = otherPoly[otherPoly.length - 2], y3 = otherPoly[otherPoly.length - 1];
if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex)
continue;
let winding1 = Triangulator.winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3);
let winding2 = Triangulator.winding(x3, y3, firstX, firstY, secondX, secondY);
if (winding1 == winding && winding2 == winding) {
otherPoly.length = 0;
otherIndices.length = 0;
polygon.push(x3);
polygon.push(y3);
polygonIndices.push(otherLastIndex);
prevPrevX = prevX;
prevPrevY = prevY;
prevX = x3;
prevY = y3;
ii = 0;
}
}
}
for (let i = convexPolygons.length - 1; i >= 0; i--) {
polygon = convexPolygons[i];
if (polygon.length == 0) {
convexPolygons.splice(i, 1);
this.polygonPool.free(polygon);
polygonIndices = convexPolygonsIndices[i];
convexPolygonsIndices.splice(i, 1);
this.polygonIndicesPool.free(polygonIndices);
}
}
return convexPolygons;
}
static isConcave(index, vertexCount, vertices, indices) {
let previous = indices[(vertexCount + index - 1) % vertexCount] << 1;
let current = indices[index] << 1;
let next = indices[(index + 1) % vertexCount] << 1;
return !this.positiveArea(
vertices[previous],
vertices[previous + 1],
vertices[current],
vertices[current + 1],
vertices[next],
vertices[next + 1]
);
}
static positiveArea(p1x, p1y, p2x, p2y, p3x, p3y) {
return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0;
}
static winding(p1x, p1y, p2x, p2y, p3x, p3y) {
let px = p2x - p1x, py = p2y - p1y;
return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1;
}
};
// spine-core/src/SkeletonClipping.ts
var SkeletonClipping = class {
triangulator = new Triangulator();
clippingPolygon = new Array();
clipOutput = new Array();
clippedVertices = new Array();
clippedUVs = new Array();
clippedTriangles = new Array();
scratch = new Array();
clipAttachment = null;
clippingPolygons = null;
clipStart(slot, clip) {
if (this.clipAttachment)
return 0;
this.clipAttachment = clip;
let n = clip.worldVerticesLength;
let vertices = Utils.setArraySize(this.clippingPolygon, n);
clip.computeWorldVertices(slot, 0, n, vertices, 0, 2);
let clippingPolygon = this.clippingPolygon;
SkeletonClipping.makeClockwise(clippingPolygon);
let clippingPolygons = this.clippingPolygons = this.triangulator.decompose(clippingPolygon, this.triangulator.triangulate(clippingPolygon));
for (let i = 0, n2 = clippingPolygons.length; i < n2; i++) {
let polygon = clippingPolygons[i];
SkeletonClipping.makeClockwise(polygon);
polygon.push(polygon[0]);
polygon.push(polygon[1]);
}
return clippingPolygons.length;
}
clipEndWithSlot(slot) {
if (this.clipAttachment && this.clipAttachment.endSlot == slot.data)
this.clipEnd();
}
clipEnd() {
if (!this.clipAttachment)
return;
this.clipAttachment = null;
this.clippingPolygons = null;
this.clippedVertices.length = 0;
this.clippedTriangles.length = 0;
this.clippingPolygon.length = 0;
}
isClipping() {
return this.clipAttachment != null;
}
clipTriangles(vertices, verticesLengthOrTriangles, trianglesOrTrianglesLength, trianglesLengthOrUvs, uvsOrLight, lightOrDark, darkOrTwoColor, twoColorParam) {
let triangles;
let trianglesLength;
let uvs;
let light;
let dark;
let twoColor;
if (typeof verticesLengthOrTriangles === "number") {
triangles = trianglesOrTrianglesLength;
trianglesLength = trianglesLengthOrUvs;
uvs = uvsOrLight;
light = lightOrDark;
dark = darkOrTwoColor;
twoColor = twoColorParam;
} else {
triangles = verticesLengthOrTriangles;
trianglesLength = trianglesOrTrianglesLength;
uvs = trianglesLengthOrUvs;
light = uvsOrLight;
dark = lightOrDark;
twoColor = darkOrTwoColor;
}
if (uvs && light && dark && typeof twoColor === "boolean")
this.clipTrianglesRender(vertices, triangles, trianglesLength, uvs, light, dark, twoColor);
else
this.clipTrianglesNoRender(vertices, triangles, trianglesLength);
}
clipTrianglesNoRender(vertices, triangles, trianglesLength) {
let clipOutput = this.clipOutput, clippedVertices = this.clippedVertices;
let clippedTriangles = this.clippedTriangles;
let polygons = this.clippingPolygons;
let polygonsCount = polygons.length;
let index = 0;
clippedVertices.length = 0;
clippedTriangles.length = 0;
for (let i = 0; i < trianglesLength; i += 3) {
let vertexOffset = triangles[i] << 1;
let x1 = vertices[vertexOffset], y1 = vertices[vertexOffset + 1];
vertexOffset = triangles[i + 1] << 1;
let x2 = vertices[vertexOffset], y2 = vertices[vertexOffset + 1];
vertexOffset = triangles[i + 2] << 1;
let x3 = vertices[vertexOffset], y3 = vertices[vertexOffset + 1];
for (let p = 0; p < polygonsCount; p++) {
let s = clippedVertices.length;
if (this.clip(x1, y1, x2, y2, x3, y3, polygons[p], clipOutput)) {
let clipOutputLength = clipOutput.length;
if (clipOutputLength == 0)
continue;
let clipOutputCount = clipOutputLength >> 1;
let clipOutputItems = this.clipOutput;
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + clipOutputCount * 2);
for (let ii = 0; ii < clipOutputLength; ii += 2, s += 2) {
let x = clipOutputItems[ii], y = clipOutputItems[ii + 1];
clippedVerticesItems[s] = x;
clippedVerticesItems[s + 1] = y;
}
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3 * (clipOutputCount - 2));
clipOutputCount--;
for (let ii = 1; ii < clipOutputCount; ii++, s += 3) {
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + ii;
clippedTrianglesItems[s + 2] = index + ii + 1;
}
index += clipOutputCount + 1;
} else {
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + 3 * 2);
clippedVerticesItems[s] = x1;
clippedVerticesItems[s + 1] = y1;
clippedVerticesItems[s + 2] = x2;
clippedVerticesItems[s + 3] = y2;
clippedVerticesItems[s + 4] = x3;
clippedVerticesItems[s + 5] = y3;
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3);
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + 1;
clippedTrianglesItems[s + 2] = index + 2;
index += 3;
break;
}
}
}
}
clipTrianglesRender(vertices, triangles, trianglesLength, uvs, light, dark, twoColor) {
let clipOutput = this.clipOutput, clippedVertices = this.clippedVertices;
let clippedTriangles = this.clippedTriangles;
let polygons = this.clippingPolygons;
let polygonsCount = polygons.length;
let vertexSize = twoColor ? 12 : 8;
let index = 0;
clippedVertices.length = 0;
clippedTriangles.length = 0;
for (let i = 0; i < trianglesLength; i += 3) {
let vertexOffset = triangles[i] << 1;
let x1 = vertices[vertexOffset], y1 = vertices[vertexOffset + 1];
let u1 = uvs[vertexOffset], v1 = uvs[vertexOffset + 1];
vertexOffset = triangles[i + 1] << 1;
let x2 = vertices[vertexOffset], y2 = vertices[vertexOffset + 1];
let u2 = uvs[vertexOffset], v2 = uvs[vertexOffset + 1];
vertexOffset = triangles[i + 2] << 1;
let x3 = vertices[vertexOffset], y3 = vertices[vertexOffset + 1];
let u3 = uvs[vertexOffset], v3 = uvs[vertexOffset + 1];
for (let p = 0; p < polygonsCount; p++) {
let s = clippedVertices.length;
if (this.clip(x1, y1, x2, y2, x3, y3, polygons[p], clipOutput)) {
let clipOutputLength = clipOutput.length;
if (clipOutputLength == 0)
continue;
let d0 = y2 - y3, d1 = x3 - x2, d2 = x1 - x3, d4 = y3 - y1;
let d = 1 / (d0 * d2 + d1 * (y1 - y3));
let clipOutputCount = clipOutputLength >> 1;
let clipOutputItems = this.clipOutput;
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + clipOutputCount * vertexSize);
for (let ii = 0; ii < clipOutputLength; ii += 2, s += vertexSize) {
let x = clipOutputItems[ii], y = clipOutputItems[ii + 1];
clippedVerticesItems[s] = x;
clippedVerticesItems[s + 1] = y;
clippedVerticesItems[s + 2] = light.r;
clippedVerticesItems[s + 3] = light.g;
clippedVerticesItems[s + 4] = light.b;
clippedVerticesItems[s + 5] = light.a;
let c0 = x - x3, c1 = y - y3;
let a = (d0 * c0 + d1 * c1) * d;
let b = (d4 * c0 + d2 * c1) * d;
let c = 1 - a - b;
clippedVerticesItems[s + 6] = u1 * a + u2 * b + u3 * c;
clippedVerticesItems[s + 7] = v1 * a + v2 * b + v3 * c;
if (twoColor) {
clippedVerticesItems[s + 8] = dark.r;
clippedVerticesItems[s + 9] = dark.g;
clippedVerticesItems[s + 10] = dark.b;
clippedVerticesItems[s + 11] = dark.a;
}
}
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3 * (clipOutputCount - 2));
clipOutputCount--;
for (let ii = 1; ii < clipOutputCount; ii++, s += 3) {
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + ii;
clippedTrianglesItems[s + 2] = index + ii + 1;
}
index += clipOutputCount + 1;
} else {
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + 3 * vertexSize);
clippedVerticesItems[s] = x1;
clippedVerticesItems[s + 1] = y1;
clippedVerticesItems[s + 2] = light.r;
clippedVerticesItems[s + 3] = light.g;
clippedVerticesItems[s + 4] = light.b;
clippedVerticesItems[s + 5] = light.a;
if (!twoColor) {
clippedVerticesItems[s + 6] = u1;
clippedVerticesItems[s + 7] = v1;
clippedVerticesItems[s + 8] = x2;
clippedVerticesItems[s + 9] = y2;
clippedVerticesItems[s + 10] = light.r;
clippedVerticesItems[s + 11] = light.g;
clippedVerticesItems[s + 12] = light.b;
clippedVerticesItems[s + 13] = light.a;
clippedVerticesItems[s + 14] = u2;
clippedVerticesItems[s + 15] = v2;
clippedVerticesItems[s + 16] = x3;
clippedVerticesItems[s + 17] = y3;
clippedVerticesItems[s + 18] = light.r;
clippedVerticesItems[s + 19] = light.g;
clippedVerticesItems[s + 20] = light.b;
clippedVerticesItems[s + 21] = light.a;
clippedVerticesItems[s + 22] = u3;
clippedVerticesItems[s + 23] = v3;
} else {
clippedVerticesItems[s + 6] = u1;
clippedVerticesItems[s + 7] = v1;
clippedVerticesItems[s + 8] = dark.r;
clippedVerticesItems[s + 9] = dark.g;
clippedVerticesItems[s + 10] = dark.b;
clippedVerticesItems[s + 11] = dark.a;
clippedVerticesItems[s + 12] = x2;
clippedVerticesItems[s + 13] = y2;
clippedVerticesItems[s + 14] = light.r;
clippedVerticesItems[s + 15] = light.g;
clippedVerticesItems[s + 16] = light.b;
clippedVerticesItems[s + 17] = light.a;
clippedVerticesItems[s + 18] = u2;
clippedVerticesItems[s + 19] = v2;
clippedVerticesItems[s + 20] = dark.r;
clippedVerticesItems[s + 21] = dark.g;
clippedVerticesItems[s + 22] = dark.b;
clippedVerticesItems[s + 23] = dark.a;
clippedVerticesItems[s + 24] = x3;
clippedVerticesItems[s + 25] = y3;
clippedVerticesItems[s + 26] = light.r;
clippedVerticesItems[s + 27] = light.g;
clippedVerticesItems[s + 28] = light.b;
clippedVerticesItems[s + 29] = light.a;
clippedVerticesItems[s + 30] = u3;
clippedVerticesItems[s + 31] = v3;
clippedVerticesItems[s + 32] = dark.r;
clippedVerticesItems[s + 33] = dark.g;
clippedVerticesItems[s + 34] = dark.b;
clippedVerticesItems[s + 35] = dark.a;
}
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3);
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + 1;
clippedTrianglesItems[s + 2] = index + 2;
index += 3;
break;
}
}
}
}
clipTrianglesUnpacked(vertices, triangles, trianglesLength, uvs) {
let clipOutput = this.clipOutput, clippedVertices = this.clippedVertices, clippedUVs = this.clippedUVs;
let clippedTriangles = this.clippedTriangles;
let polygons = this.clippingPolygons;
let polygonsCount = polygons.length;
let index = 0;
clippedVertices.length = 0;
clippedUVs.length = 0;
clippedTriangles.length = 0;
for (let i = 0; i < trianglesLength; i += 3) {
let vertexOffset = triangles[i] << 1;
let x1 = vertices[vertexOffset], y1 = vertices[vertexOffset + 1];
let u1 = uvs[vertexOffset], v1 = uvs[vertexOffset + 1];
vertexOffset = triangles[i + 1] << 1;
let x2 = vertices[vertexOffset], y2 = vertices[vertexOffset + 1];
let u2 = uvs[vertexOffset], v2 = uvs[vertexOffset + 1];
vertexOffset = triangles[i + 2] << 1;
let x3 = vertices[vertexOffset], y3 = vertices[vertexOffset + 1];
let u3 = uvs[vertexOffset], v3 = uvs[vertexOffset + 1];
for (let p = 0; p < polygonsCount; p++) {
let s = clippedVertices.length;
if (this.clip(x1, y1, x2, y2, x3, y3, polygons[p], clipOutput)) {
let clipOutputLength = clipOutput.length;
if (clipOutputLength == 0)
continue;
let d0 = y2 - y3, d1 = x3 - x2, d2 = x1 - x3, d4 = y3 - y1;
let d = 1 / (d0 * d2 + d1 * (y1 - y3));
let clipOutputCount = clipOutputLength >> 1;
let clipOutputItems = this.clipOutput;
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + clipOutputCount * 2);
let clippedUVsItems = Utils.setArraySize(clippedUVs, s + clipOutputCount * 2);
for (let ii = 0; ii < clipOutputLength; ii += 2, s += 2) {
let x = clipOutputItems[ii], y = clipOutputItems[ii + 1];
clippedVerticesItems[s] = x;
clippedVerticesItems[s + 1] = y;
let c0 = x - x3, c1 = y - y3;
let a = (d0 * c0 + d1 * c1) * d;
let b = (d4 * c0 + d2 * c1) * d;
let c = 1 - a - b;
clippedUVsItems[s] = u1 * a + u2 * b + u3 * c;
clippedUVsItems[s + 1] = v1 * a + v2 * b + v3 * c;
}
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3 * (clipOutputCount - 2));
clipOutputCount--;
for (let ii = 1; ii < clipOutputCount; ii++, s += 3) {
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + ii;
clippedTrianglesItems[s + 2] = index + ii + 1;
}
index += clipOutputCount + 1;
} else {
let clippedVerticesItems = Utils.setArraySize(clippedVertices, s + 3 * 2);
clippedVerticesItems[s] = x1;
clippedVerticesItems[s + 1] = y1;
clippedVerticesItems[s + 2] = x2;
clippedVerticesItems[s + 3] = y2;
clippedVerticesItems[s + 4] = x3;
clippedVerticesItems[s + 5] = y3;
let clippedUVSItems = Utils.setArraySize(clippedUVs, s + 3 * 2);
clippedUVSItems[s] = u1;
clippedUVSItems[s + 1] = v1;
clippedUVSItems[s + 2] = u2;
clippedUVSItems[s + 3] = v2;
clippedUVSItems[s + 4] = u3;
clippedUVSItems[s + 5] = v3;
s = clippedTriangles.length;
let clippedTrianglesItems = Utils.setArraySize(clippedTriangles, s + 3);
clippedTrianglesItems[s] = index;
clippedTrianglesItems[s + 1] = index + 1;
clippedTrianglesItems[s + 2] = index + 2;
index += 3;
break;
}
}
}
}
/** Clips the input triangle against the convex, clockwise clipping area. If the triangle lies entirely within the clipping
* area, false is returned. The clipping area must duplicate the first vertex at the end of the vertices list. */
clip(x1, y1, x2, y2, x3, y3, clippingArea, output) {
let originalOutput = output;
let clipped = false;
let input;
if (clippingArea.length % 4 >= 2) {
input = output;
output = this.scratch;
} else
input = this.scratch;
input.length = 0;
input.push(x1);
input.push(y1);
input.push(x2);
input.push(y2);
input.push(x3);
input.push(y3);
input.push(x1);
input.push(y1);
output.length = 0;
let clippingVerticesLast = clippingArea.length - 4;
let clippingVertices = clippingArea;
for (let i = 0; ; i += 2) {
let edgeX = clippingVertices[i], edgeY = clippingVertices[i + 1];
let ex = edgeX - clippingVertices[i + 2], ey = edgeY - clippingVertices[i + 3];
let outputStart = output.length;
let inputVertices = input;
for (let ii = 0, nn = input.length - 2; ii < nn; ) {
let inputX = inputVertices[ii], inputY = inputVertices[ii + 1];
ii += 2;
let inputX2 = inputVertices[ii], inputY2 = inputVertices[ii + 1];
let s2 = ey * (edgeX - inputX2) > ex * (edgeY - inputY2);
let s1 = ey * (edgeX - inputX) - ex * (edgeY - inputY);
if (s1 > 0) {
if (s2) {
output.push(inputX2);
output.push(inputY2);
continue;
}
let ix = inputX2 - inputX, iy = inputY2 - inputY, t = s1 / (ix * ey - iy * ex);
if (t >= 0 && t <= 1) {
output.push(inputX + ix * t);
output.push(inputY + iy * t);
} else {
output.push(inputX2);
output.push(inputY2);
continue;
}
} else if (s2) {
let ix = inputX2 - inputX, iy = inputY2 - inputY, t = s1 / (ix * ey - iy * ex);
if (t >= 0 && t <= 1) {
output.push(inputX + ix * t);
output.push(inputY + iy * t);
output.push(inputX2);
output.push(inputY2);
} else {
output.push(inputX2);
output.push(inputY2);
continue;
}
}
clipped = true;
}
if (outputStart == output.length) {
originalOutput.length = 0;
return true;
}
output.push(output[0]);
output.push(output[1]);
if (i == clippingVerticesLast)
break;
let temp = output;
output = input;
output.length = 0;
input = temp;
}
if (originalOutput != output) {
originalOutput.length = 0;
for (let i = 0, n = output.length - 2; i < n; i++)
originalOutput[i] = output[i];
} else
originalOutput.length = originalOutput.length - 2;
return clipped;
}
static makeClockwise(polygon) {
let vertices = polygon;
let verticeslength = polygon.length;
let area = vertices[verticeslength - 2] * vertices[1] - vertices[0] * vertices[verticeslength - 1], p1x = 0, p1y = 0, p2x = 0, p2y = 0;
for (let i = 0, n = verticeslength - 3; i < n; i += 2) {
p1x = vertices[i];
p1y = vertices[i + 1];
p2x = vertices[i + 2];
p2y = vertices[i + 3];
area += p1x * p2y - p2x * p1y;
}
if (area < 0)
return;
for (let i = 0, lastX = verticeslength - 2, n = verticeslength >> 1; i < n; i += 2) {
let x = vertices[i], y = vertices[i + 1];
let other = lastX - i;
vertices[i] = vertices[other];
vertices[i + 1] = vertices[other + 1];
vertices[other] = x;
vertices[other + 1] = y;
}
}
};
// spine-core/src/SkeletonJson.ts
var SkeletonJson = class {
attachmentLoader;
/** Scales bone positions, image sizes, and translations as they are loaded. This allows different size images to be used at
* runtime than were used in Spine.
*
* See [Scaling](http://esotericsoftware.com/spine-loading-skeleton-data#Scaling) in the Spine Runtimes Guide. */
scale = 1;
linkedMeshes = new Array();
constructor(attachmentLoader) {
this.attachmentLoader = attachmentLoader;
}
readSkeletonData(json) {
let scale = this.scale;
let skeletonData = new SkeletonData();
let root = typeof json === "string" ? JSON.parse(json) : json;
let skeletonMap = root.skeleton;
if (skeletonMap) {
skeletonData.hash = skeletonMap.hash;
skeletonData.version = skeletonMap.spine;
skeletonData.x = skeletonMap.x;
skeletonData.y = skeletonMap.y;
skeletonData.width = skeletonMap.width;
skeletonData.height = skeletonMap.height;
skeletonData.referenceScale = getValue(skeletonMap, "referenceScale", 100) * scale;
skeletonData.fps = skeletonMap.fps;
skeletonData.imagesPath = skeletonMap.images ?? null;
skeletonData.audioPath = skeletonMap.audio ?? null;
}
if (root.bones) {
for (let i = 0; i < root.bones.length; i++) {
let boneMap = root.bones[i];
let parent = null;
let parentName = getValue(boneMap, "parent", null);
if (parentName)
parent = skeletonData.findBone(parentName);
let data = new BoneData(skeletonData.bones.length, boneMap.name, parent);
data.length = getValue(boneMap, "length", 0) * scale;
data.x = getValue(boneMap, "x", 0) * scale;
data.y = getValue(boneMap, "y", 0) * scale;
data.rotation = getValue(boneMap, "rotation", 0);
data.scaleX = getValue(boneMap, "scaleX", 1);
data.scaleY = getValue(boneMap, "scaleY", 1);
data.shearX = getValue(boneMap, "shearX", 0);
data.shearY = getValue(boneMap, "shearY", 0);
data.inherit = Utils.enumValue(Inherit, getValue(boneMap, "inherit", "Normal"));
data.skinRequired = getValue(boneMap, "skin", false);
let color = getValue(boneMap, "color", null);
if (color)
data.color.setFromString(color);
skeletonData.bones.push(data);
}
}
if (root.slots) {
for (let i = 0; i < root.slots.length; i++) {
let slotMap = root.slots[i];
let slotName = slotMap.name;
let boneData = skeletonData.findBone(slotMap.bone);
if (!boneData)
throw new Error(`Couldn't find bone ${slotMap.bone} for slot ${slotName}`);
let data = new SlotData(skeletonData.slots.length, slotName, boneData);
let color = getValue(slotMap, "color", null);
if (color)
data.color.setFromString(color);
let dark = getValue(slotMap, "dark", null);
if (dark)
data.darkColor = Color.fromString(dark);
data.attachmentName = getValue(slotMap, "attachment", null);
data.blendMode = Utils.enumValue(BlendMode, getValue(slotMap, "blend", "normal"));
data.visible = getValue(slotMap, "visible", true);
skeletonData.slots.push(data);
}
}
if (root.ik) {
for (let i = 0; i < root.ik.length; i++) {
let constraintMap = root.ik[i];
let data = new IkConstraintData(constraintMap.name);
data.order = getValue(constraintMap, "order", 0);
data.skinRequired = getValue(constraintMap, "skin", false);
for (let ii = 0; ii < constraintMap.bones.length; ii++) {
let bone = skeletonData.findBone(constraintMap.bones[ii]);
if (!bone)
throw new Error(`Couldn't find bone ${constraintMap.bones[ii]} for IK constraint ${constraintMap.name}.`);
data.bones.push(bone);
}
let target = skeletonData.findBone(constraintMap.target);
;
if (!target)
throw new Error(`Couldn't find target bone ${constraintMap.target} for IK constraint ${constraintMap.name}.`);
data.target = target;
data.mix = getValue(constraintMap, "mix", 1);
data.softness = getValue(constraintMap, "softness", 0) * scale;
data.bendDirection = getValue(constraintMap, "bendPositive", true) ? 1 : -1;
data.compress = getValue(constraintMap, "compress", false);
data.stretch = getValue(constraintMap, "stretch", false);
data.uniform = getValue(constraintMap, "uniform", false);
skeletonData.ikConstraints.push(data);
}
}
if (root.transform) {
for (let i = 0; i < root.transform.length; i++) {
let constraintMap = root.transform[i];
let data = new TransformConstraintData(constraintMap.name);
data.order = getValue(constraintMap, "order", 0);
data.skinRequired = getValue(constraintMap, "skin", false);
for (let ii = 0; ii < constraintMap.bones.length; ii++) {
let boneName = constraintMap.bones[ii];
let bone = skeletonData.findBone(boneName);
if (!bone)
throw new Error(`Couldn't find bone ${boneName} for transform constraint ${constraintMap.name}.`);
data.bones.push(bone);
}
let targetName = constraintMap.target;
let target = skeletonData.findBone(targetName);
if (!target)
throw new Error(`Couldn't find target bone ${targetName} for transform constraint ${constraintMap.name}.`);
data.target = target;
data.local = getValue(constraintMap, "local", false);
data.relative = getValue(constraintMap, "relative", false);
data.offsetRotation = getValue(constraintMap, "rotation", 0);
data.offsetX = getValue(constraintMap, "x", 0) * scale;
data.offsetY = getValue(constraintMap, "y", 0) * scale;
data.offsetScaleX = getValue(constraintMap, "scaleX", 0);
data.offsetScaleY = getValue(constraintMap, "scaleY", 0);
data.offsetShearY = getValue(constraintMap, "shearY", 0);
data.mixRotate = getValue(constraintMap, "mixRotate", 1);
data.mixX = getValue(constraintMap, "mixX", 1);
data.mixY = getValue(constraintMap, "mixY", data.mixX);
data.mixScaleX = getValue(constraintMap, "mixScaleX", 1);
data.mixScaleY = getValue(constraintMap, "mixScaleY", data.mixScaleX);
data.mixShearY = getValue(constraintMap, "mixShearY", 1);
skeletonData.transformConstraints.push(data);
}
}
if (root.path) {
for (let i = 0; i < root.path.length; i++) {
let constraintMap = root.path[i];
let data = new PathConstraintData(constraintMap.name);
data.order = getValue(constraintMap, "order", 0);
data.skinRequired = getValue(constraintMap, "skin", false);
for (let ii = 0; ii < constraintMap.bones.length; ii++) {
let boneName = constraintMap.bones[ii];
let bone = skeletonData.findBone(boneName);
if (!bone)
throw new Error(`Couldn't find bone ${boneName} for path constraint ${constraintMap.name}.`);
data.bones.push(bone);
}
let targetName = constraintMap.target;
let target = skeletonData.findSlot(targetName);
if (!target)
throw new Error(`Couldn't find target slot ${targetName} for path constraint ${constraintMap.name}.`);
data.target = target;
data.positionMode = Utils.enumValue(PositionMode, getValue(constraintMap, "positionMode", "Percent"));
data.spacingMode = Utils.enumValue(SpacingMode, getValue(constraintMap, "spacingMode", "Length"));
data.rotateMode = Utils.enumValue(RotateMode, getValue(constraintMap, "rotateMode", "Tangent"));
data.offsetRotation = getValue(constraintMap, "rotation", 0);
data.position = getValue(constraintMap, "position", 0);
if (data.positionMode == 0 /* Fixed */)
data.position *= scale;
data.spacing = getValue(constraintMap, "spacing", 0);
if (data.spacingMode == 0 /* Length */ || data.spacingMode == 1 /* Fixed */)
data.spacing *= scale;
data.mixRotate = getValue(constraintMap, "mixRotate", 1);
data.mixX = getValue(constraintMap, "mixX", 1);
data.mixY = getValue(constraintMap, "mixY", data.mixX);
skeletonData.pathConstraints.push(data);
}
}
if (root.physics) {
for (let i = 0; i < root.physics.length; i++) {
const constraintMap = root.physics[i];
const data = new PhysicsConstraintData(constraintMap.name);
data.order = getValue(constraintMap, "order", 0);
data.skinRequired = getValue(constraintMap, "skin", false);
const boneName = constraintMap.bone;
const bone = skeletonData.findBone(boneName);
if (bone == null)
throw new Error("Physics bone not found: " + boneName);
data.bone = bone;
data.x = getValue(constraintMap, "x", 0);
data.y = getValue(constraintMap, "y", 0);
data.rotate = getValue(constraintMap, "rotate", 0);
data.scaleX = getValue(constraintMap, "scaleX", 0);
data.shearX = getValue(constraintMap, "shearX", 0);
data.limit = getValue(constraintMap, "limit", 5e3) * scale;
data.step = 1 / getValue(constraintMap, "fps", 60);
data.inertia = getValue(constraintMap, "inertia", 1);
data.strength = getValue(constraintMap, "strength", 100);
data.damping = getValue(constraintMap, "damping", 1);
data.massInverse = 1 / getValue(constraintMap, "mass", 1);
data.wind = getValue(constraintMap, "wind", 0);
data.gravity = getValue(constraintMap, "gravity", 0);
data.mix = getValue(constraintMap, "mix", 1);
data.inertiaGlobal = getValue(constraintMap, "inertiaGlobal", false);
data.strengthGlobal = getValue(constraintMap, "strengthGlobal", false);
data.dampingGlobal = getValue(constraintMap, "dampingGlobal", false);
data.massGlobal = getValue(constraintMap, "massGlobal", false);
data.windGlobal = getValue(constraintMap, "windGlobal", false);
data.gravityGlobal = getValue(constraintMap, "gravityGlobal", false);
data.mixGlobal = getValue(constraintMap, "mixGlobal", false);
skeletonData.physicsConstraints.push(data);
}
}
if (root.skins) {
for (let i = 0; i < root.skins.length; i++) {
let skinMap = root.skins[i];
let skin = new Skin(skinMap.name);
if (skinMap.bones) {
for (let ii = 0; ii < skinMap.bones.length; ii++) {
let boneName = skinMap.bones[ii];
let bone = skeletonData.findBone(boneName);
if (!bone)
throw new Error(`Couldn't find bone ${boneName} for skin ${skinMap.name}.`);
skin.bones.push(bone);
}
}
if (skinMap.ik) {
for (let ii = 0; ii < skinMap.ik.length; ii++) {
let constraintName = skinMap.ik[ii];
let constraint = skeletonData.findIkConstraint(constraintName);
if (!constraint)
throw new Error(`Couldn't find IK constraint ${constraintName} for skin ${skinMap.name}.`);
skin.constraints.push(constraint);
}
}
if (skinMap.transform) {
for (let ii = 0; ii < skinMap.transform.length; ii++) {
let constraintName = skinMap.transform[ii];
let constraint = skeletonData.findTransformConstraint(constraintName);
if (!constraint)
throw new Error(`Couldn't find transform constraint ${constraintName} for skin ${skinMap.name}.`);
skin.constraints.push(constraint);
}
}
if (skinMap.path) {
for (let ii = 0; ii < skinMap.path.length; ii++) {
let constraintName = skinMap.path[ii];
let constraint = skeletonData.findPathConstraint(constraintName);
if (!constraint)
throw new Error(`Couldn't find path constraint ${constraintName} for skin ${skinMap.name}.`);
skin.constraints.push(constraint);
}
}
if (skinMap.physics) {
for (let ii = 0; ii < skinMap.physics.length; ii++) {
let constraintName = skinMap.physics[ii];
let constraint = skeletonData.findPhysicsConstraint(constraintName);
if (!constraint)
throw new Error(`Couldn't find physics constraint ${constraintName} for skin ${skinMap.name}.`);
skin.constraints.push(constraint);
}
}
for (let slotName in skinMap.attachments) {
let slot = skeletonData.findSlot(slotName);
if (!slot)
throw new Error(`Couldn't find slot ${slotName} for skin ${skinMap.name}.`);
let slotMap = skinMap.attachments[slotName];
for (let entryName in slotMap) {
let attachment = this.readAttachment(slotMap[entryName], skin, slot.index, entryName, skeletonData);
if (attachment)
skin.setAttachment(slot.index, entryName, attachment);
}
}
skeletonData.skins.push(skin);
if (skin.name == "default")
skeletonData.defaultSkin = skin;
}
}
for (let i = 0, n = this.linkedMeshes.length; i < n; i++) {
let linkedMesh = this.linkedMeshes[i];
let skin = !linkedMesh.skin ? skeletonData.defaultSkin : skeletonData.findSkin(linkedMesh.skin);
if (!skin)
throw new Error(`Skin not found: ${linkedMesh.skin}`);
let parent = skin.getAttachment(linkedMesh.slotIndex, linkedMesh.parent);
if (!parent)
throw new Error(`Parent mesh not found: ${linkedMesh.parent}`);
linkedMesh.mesh.timelineAttachment = linkedMesh.inheritTimeline ? parent : linkedMesh.mesh;
linkedMesh.mesh.setParentMesh(parent);
if (linkedMesh.mesh.region != null)
linkedMesh.mesh.updateRegion();
}
this.linkedMeshes.length = 0;
if (root.events) {
for (let eventName in root.events) {
let eventMap = root.events[eventName];
let data = new EventData(eventName);
data.intValue = getValue(eventMap, "int", 0);
data.floatValue = getValue(eventMap, "float", 0);
data.stringValue = getValue(eventMap, "string", "");
data.audioPath = getValue(eventMap, "audio", null);
if (data.audioPath) {
data.volume = getValue(eventMap, "volume", 1);
data.balance = getValue(eventMap, "balance", 0);
}
skeletonData.events.push(data);
}
}
if (root.animations) {
for (let animationName in root.animations) {
let animationMap = root.animations[animationName];
this.readAnimation(animationMap, animationName, skeletonData);
}
}
return skeletonData;
}
readAttachment(map, skin, slotIndex, name, skeletonData) {
let scale = this.scale;
name = getValue(map, "name", name);
switch (getValue(map, "type", "region")) {
case "region": {
let path = getValue(map, "path", name);
let sequence = this.readSequence(getValue(map, "sequence", null));
let region = this.attachmentLoader.newRegionAttachment(skin, name, path, sequence);
if (!region)
return null;
region.path = path;
region.x = getValue(map, "x", 0) * scale;
region.y = getValue(map, "y", 0) * scale;
region.scaleX = getValue(map, "scaleX", 1);
region.scaleY = getValue(map, "scaleY", 1);
region.rotation = getValue(map, "rotation", 0);
region.width = map.width * scale;
region.height = map.height * scale;
region.sequence = sequence;
let color = getValue(map, "color", null);
if (color)
region.color.setFromString(color);
if (region.region != null)
region.updateRegion();
return region;
}
case "boundingbox": {
let box = this.attachmentLoader.newBoundingBoxAttachment(skin, name);
if (!box)
return null;
this.readVertices(map, box, map.vertexCount << 1);
let color = getValue(map, "color", null);
if (color)
box.color.setFromString(color);
return box;
}
case "mesh":
case "linkedmesh": {
let path = getValue(map, "path", name);
let sequence = this.readSequence(getValue(map, "sequence", null));
let mesh = this.attachmentLoader.newMeshAttachment(skin, name, path, sequence);
if (!mesh)
return null;
mesh.path = path;
let color = getValue(map, "color", null);
if (color)
mesh.color.setFromString(color);
mesh.width = getValue(map, "width", 0) * scale;
mesh.height = getValue(map, "height", 0) * scale;
mesh.sequence = sequence;
let parent = getValue(map, "parent", null);
if (parent) {
this.linkedMeshes.push(new LinkedMesh2(mesh, getValue(map, "skin", null), slotIndex, parent, getValue(map, "timelines", true)));
return mesh;
}
let uvs = map.uvs;
this.readVertices(map, mesh, uvs.length);
mesh.triangles = map.triangles;
mesh.regionUVs = uvs;
if (mesh.region != null)
mesh.updateRegion();
mesh.edges = getValue(map, "edges", null);
mesh.hullLength = getValue(map, "hull", 0) * 2;
return mesh;
}
case "path": {
let path = this.attachmentLoader.newPathAttachment(skin, name);
if (!path)
return null;
path.closed = getValue(map, "closed", false);
path.constantSpeed = getValue(map, "constantSpeed", true);
let vertexCount = map.vertexCount;
this.readVertices(map, path, vertexCount << 1);
let lengths = Utils.newArray(vertexCount / 3, 0);
for (let i = 0; i < map.lengths.length; i++)
lengths[i] = map.lengths[i] * scale;
path.lengths = lengths;
let color = getValue(map, "color", null);
if (color)
path.color.setFromString(color);
return path;
}
case "point": {
let point = this.attachmentLoader.newPointAttachment(skin, name);
if (!point)
return null;
point.x = getValue(map, "x", 0) * scale;
point.y = getValue(map, "y", 0) * scale;
point.rotation = getValue(map, "rotation", 0);
let color = getValue(map, "color", null);
if (color)
point.color.setFromString(color);
return point;
}
case "clipping": {
let clip = this.attachmentLoader.newClippingAttachment(skin, name);
if (!clip)
return null;
let end = getValue(map, "end", null);
if (end)
clip.endSlot = skeletonData.findSlot(end);
let vertexCount = map.vertexCount;
this.readVertices(map, clip, vertexCount << 1);
let color = getValue(map, "color", null);
if (color)
clip.color.setFromString(color);
return clip;
}
}
return null;
}
readSequence(map) {
if (map == null)
return null;
let sequence = new Sequence(getValue(map, "count", 0));
sequence.start = getValue(map, "start", 1);
sequence.digits = getValue(map, "digits", 0);
sequence.setupIndex = getValue(map, "setup", 0);
return sequence;
}
readVertices(map, attachment, verticesLength) {
let scale = this.scale;
attachment.worldVerticesLength = verticesLength;
let vertices = map.vertices;
if (verticesLength == vertices.length) {
let scaledVertices = Utils.toFloatArray(vertices);
if (scale != 1) {
for (let i = 0, n = vertices.length; i < n; i++)
scaledVertices[i] *= scale;
}
attachment.vertices = scaledVertices;
return;
}
let weights = new Array();
let bones = new Array();
for (let i = 0, n = vertices.length; i < n; ) {
let boneCount = vertices[i++];
bones.push(boneCount);
for (let nn = i + boneCount * 4; i < nn; i += 4) {
bones.push(vertices[i]);
weights.push(vertices[i + 1] * scale);
weights.push(vertices[i + 2] * scale);
weights.push(vertices[i + 3]);
}
}
attachment.bones = bones;
attachment.vertices = Utils.toFloatArray(weights);
}
readAnimation(map, name, skeletonData) {
let scale = this.scale;
let timelines = new Array();
if (map.slots) {
for (let slotName in map.slots) {
let slotMap = map.slots[slotName];
let slot = skeletonData.findSlot(slotName);
if (!slot)
throw new Error("Slot not found: " + slotName);
let slotIndex = slot.index;
for (let timelineName in slotMap) {
let timelineMap = slotMap[timelineName];
if (!timelineMap)
continue;
let frames = timelineMap.length;
if (timelineName == "attachment") {
let timeline = new AttachmentTimeline(frames, slotIndex);
for (let frame = 0; frame < frames; frame++) {
let keyMap = timelineMap[frame];
timeline.setFrame(frame, getValue(keyMap, "time", 0), getValue(keyMap, "name", null));
}
timelines.push(timeline);
} else if (timelineName == "rgba") {
let timeline = new RGBATimeline(frames, frames << 2, slotIndex);
let keyMap = timelineMap[0];
let time = getValue(keyMap, "time", 0);
let color = Color.fromString(keyMap.color);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, color.r, color.g, color.b, color.a);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let newColor = Color.fromString(nextMap.color);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, color.r, newColor.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, color.g, newColor.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, color.b, newColor.b, 1);
bezier = readCurve(curve, timeline, bezier, frame, 3, time, time2, color.a, newColor.a, 1);
}
time = time2;
color = newColor;
keyMap = nextMap;
}
timelines.push(timeline);
} else if (timelineName == "rgb") {
let timeline = new RGBTimeline(frames, frames * 3, slotIndex);
let keyMap = timelineMap[0];
let time = getValue(keyMap, "time", 0);
let color = Color.fromString(keyMap.color);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, color.r, color.g, color.b);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let newColor = Color.fromString(nextMap.color);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, color.r, newColor.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, color.g, newColor.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, color.b, newColor.b, 1);
}
time = time2;
color = newColor;
keyMap = nextMap;
}
timelines.push(timeline);
} else if (timelineName == "alpha") {
timelines.push(readTimeline12(timelineMap, new AlphaTimeline(frames, frames, slotIndex), 0, 1));
} else if (timelineName == "rgba2") {
let timeline = new RGBA2Timeline(frames, frames * 7, slotIndex);
let keyMap = timelineMap[0];
let time = getValue(keyMap, "time", 0);
let color = Color.fromString(keyMap.light);
let color2 = Color.fromString(keyMap.dark);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, color.r, color.g, color.b, color.a, color2.r, color2.g, color2.b);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let newColor = Color.fromString(nextMap.light);
let newColor2 = Color.fromString(nextMap.dark);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, color.r, newColor.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, color.g, newColor.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, color.b, newColor.b, 1);
bezier = readCurve(curve, timeline, bezier, frame, 3, time, time2, color.a, newColor.a, 1);
bezier = readCurve(curve, timeline, bezier, frame, 4, time, time2, color2.r, newColor2.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 5, time, time2, color2.g, newColor2.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 6, time, time2, color2.b, newColor2.b, 1);
}
time = time2;
color = newColor;
color2 = newColor2;
keyMap = nextMap;
}
timelines.push(timeline);
} else if (timelineName == "rgb2") {
let timeline = new RGB2Timeline(frames, frames * 6, slotIndex);
let keyMap = timelineMap[0];
let time = getValue(keyMap, "time", 0);
let color = Color.fromString(keyMap.light);
let color2 = Color.fromString(keyMap.dark);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, color.r, color.g, color.b, color2.r, color2.g, color2.b);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let newColor = Color.fromString(nextMap.light);
let newColor2 = Color.fromString(nextMap.dark);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, color.r, newColor.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, color.g, newColor.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, color.b, newColor.b, 1);
bezier = readCurve(curve, timeline, bezier, frame, 3, time, time2, color2.r, newColor2.r, 1);
bezier = readCurve(curve, timeline, bezier, frame, 4, time, time2, color2.g, newColor2.g, 1);
bezier = readCurve(curve, timeline, bezier, frame, 5, time, time2, color2.b, newColor2.b, 1);
}
time = time2;
color = newColor;
color2 = newColor2;
keyMap = nextMap;
}
timelines.push(timeline);
}
}
}
}
if (map.bones) {
for (let boneName in map.bones) {
let boneMap = map.bones[boneName];
let bone = skeletonData.findBone(boneName);
if (!bone)
throw new Error("Bone not found: " + boneName);
let boneIndex = bone.index;
for (let timelineName in boneMap) {
let timelineMap = boneMap[timelineName];
let frames = timelineMap.length;
if (frames == 0)
continue;
if (timelineName === "rotate") {
timelines.push(readTimeline12(timelineMap, new RotateTimeline(frames, frames, boneIndex), 0, 1));
} else if (timelineName === "translate") {
let timeline = new TranslateTimeline(frames, frames << 1, boneIndex);
timelines.push(readTimeline22(timelineMap, timeline, "x", "y", 0, scale));
} else if (timelineName === "translatex") {
let timeline = new TranslateXTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, scale));
} else if (timelineName === "translatey") {
let timeline = new TranslateYTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, scale));
} else if (timelineName === "scale") {
let timeline = new ScaleTimeline(frames, frames << 1, boneIndex);
timelines.push(readTimeline22(timelineMap, timeline, "x", "y", 1, 1));
} else if (timelineName === "scalex") {
let timeline = new ScaleXTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 1, 1));
} else if (timelineName === "scaley") {
let timeline = new ScaleYTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 1, 1));
} else if (timelineName === "shear") {
let timeline = new ShearTimeline(frames, frames << 1, boneIndex);
timelines.push(readTimeline22(timelineMap, timeline, "x", "y", 0, 1));
} else if (timelineName === "shearx") {
let timeline = new ShearXTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, 1));
} else if (timelineName === "sheary") {
let timeline = new ShearYTimeline(frames, frames, boneIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, 1));
} else if (timelineName === "inherit") {
let timeline = new InheritTimeline(frames, bone.index);
for (let frame = 0; frame < timelineMap.length; frame++) {
let aFrame = timelineMap[frame];
timeline.setFrame(frame, getValue(aFrame, "time", 0), Utils.enumValue(Inherit, getValue(aFrame, "inherit", "Normal")));
}
timelines.push(timeline);
}
}
}
}
if (map.ik) {
for (let constraintName in map.ik) {
let constraintMap = map.ik[constraintName];
let keyMap = constraintMap[0];
if (!keyMap)
continue;
let constraint = skeletonData.findIkConstraint(constraintName);
if (!constraint)
throw new Error("IK Constraint not found: " + constraintName);
let constraintIndex = skeletonData.ikConstraints.indexOf(constraint);
let timeline = new IkConstraintTimeline(constraintMap.length, constraintMap.length << 1, constraintIndex);
let time = getValue(keyMap, "time", 0);
let mix = getValue(keyMap, "mix", 1);
let softness = getValue(keyMap, "softness", 0) * scale;
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, mix, softness, getValue(keyMap, "bendPositive", true) ? 1 : -1, getValue(keyMap, "compress", false), getValue(keyMap, "stretch", false));
let nextMap = constraintMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let mix2 = getValue(nextMap, "mix", 1);
let softness2 = getValue(nextMap, "softness", 0) * scale;
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, mix, mix2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, softness, softness2, scale);
}
time = time2;
mix = mix2;
softness = softness2;
keyMap = nextMap;
}
timelines.push(timeline);
}
}
if (map.transform) {
for (let constraintName in map.transform) {
let timelineMap = map.transform[constraintName];
let keyMap = timelineMap[0];
if (!keyMap)
continue;
let constraint = skeletonData.findTransformConstraint(constraintName);
if (!constraint)
throw new Error("Transform constraint not found: " + constraintName);
let constraintIndex = skeletonData.transformConstraints.indexOf(constraint);
let timeline = new TransformConstraintTimeline(timelineMap.length, timelineMap.length * 6, constraintIndex);
let time = getValue(keyMap, "time", 0);
let mixRotate = getValue(keyMap, "mixRotate", 1);
let mixX = getValue(keyMap, "mixX", 1);
let mixY = getValue(keyMap, "mixY", mixX);
let mixScaleX = getValue(keyMap, "mixScaleX", 1);
let mixScaleY = getValue(keyMap, "mixScaleY", mixScaleX);
let mixShearY = getValue(keyMap, "mixShearY", 1);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, mixRotate, mixX, mixY, mixScaleX, mixScaleY, mixShearY);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let mixRotate2 = getValue(nextMap, "mixRotate", 1);
let mixX2 = getValue(nextMap, "mixX", 1);
let mixY2 = getValue(nextMap, "mixY", mixX2);
let mixScaleX2 = getValue(nextMap, "mixScaleX", 1);
let mixScaleY2 = getValue(nextMap, "mixScaleY", mixScaleX2);
let mixShearY2 = getValue(nextMap, "mixShearY", 1);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, mixRotate, mixRotate2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, mixX, mixX2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, mixY, mixY2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 3, time, time2, mixScaleX, mixScaleX2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 4, time, time2, mixScaleY, mixScaleY2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 5, time, time2, mixShearY, mixShearY2, 1);
}
time = time2;
mixRotate = mixRotate2;
mixX = mixX2;
mixY = mixY2;
mixScaleX = mixScaleX2;
mixScaleY = mixScaleY2;
mixScaleX = mixScaleX2;
keyMap = nextMap;
}
timelines.push(timeline);
}
}
if (map.path) {
for (let constraintName in map.path) {
let constraintMap = map.path[constraintName];
let constraint = skeletonData.findPathConstraint(constraintName);
if (!constraint)
throw new Error("Path constraint not found: " + constraintName);
let constraintIndex = skeletonData.pathConstraints.indexOf(constraint);
for (let timelineName in constraintMap) {
let timelineMap = constraintMap[timelineName];
let keyMap = timelineMap[0];
if (!keyMap)
continue;
let frames = timelineMap.length;
if (timelineName === "position") {
let timeline = new PathConstraintPositionTimeline(frames, frames, constraintIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, constraint.positionMode == 0 /* Fixed */ ? scale : 1));
} else if (timelineName === "spacing") {
let timeline = new PathConstraintSpacingTimeline(frames, frames, constraintIndex);
timelines.push(readTimeline12(timelineMap, timeline, 0, constraint.spacingMode == 0 /* Length */ || constraint.spacingMode == 1 /* Fixed */ ? scale : 1));
} else if (timelineName === "mix") {
let timeline = new PathConstraintMixTimeline(frames, frames * 3, constraintIndex);
let time = getValue(keyMap, "time", 0);
let mixRotate = getValue(keyMap, "mixRotate", 1);
let mixX = getValue(keyMap, "mixX", 1);
let mixY = getValue(keyMap, "mixY", mixX);
for (let frame = 0, bezier = 0; ; frame++) {
timeline.setFrame(frame, time, mixRotate, mixX, mixY);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let mixRotate2 = getValue(nextMap, "mixRotate", 1);
let mixX2 = getValue(nextMap, "mixX", 1);
let mixY2 = getValue(nextMap, "mixY", mixX2);
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, mixRotate, mixRotate2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, mixX, mixX2, 1);
bezier = readCurve(curve, timeline, bezier, frame, 2, time, time2, mixY, mixY2, 1);
}
time = time2;
mixRotate = mixRotate2;
mixX = mixX2;
mixY = mixY2;
keyMap = nextMap;
}
timelines.push(timeline);
}
}
}
}
if (map.physics) {
for (let constraintName in map.physics) {
let constraintMap = map.physics[constraintName];
let constraintIndex = -1;
if (constraintName.length > 0) {
let constraint = skeletonData.findPhysicsConstraint(constraintName);
if (!constraint)
throw new Error("Physics constraint not found: " + constraintName);
constraintIndex = skeletonData.physicsConstraints.indexOf(constraint);
}
for (let timelineName in constraintMap) {
let timelineMap = constraintMap[timelineName];
let keyMap = timelineMap[0];
if (!keyMap)
continue;
let frames = timelineMap.length;
if (timelineName == "reset") {
const timeline2 = new PhysicsConstraintResetTimeline(frames, constraintIndex);
for (let frame = 0; keyMap != null; keyMap = timelineMap[frame + 1], frame++)
timeline2.setFrame(frame, getValue(keyMap, "time", 0));
timelines.push(timeline2);
continue;
}
let timeline;
if (timelineName == "inertia")
timeline = new PhysicsConstraintInertiaTimeline(frames, frames, constraintIndex);
else if (timelineName == "strength")
timeline = new PhysicsConstraintStrengthTimeline(frames, frames, constraintIndex);
else if (timelineName == "damping")
timeline = new PhysicsConstraintDampingTimeline(frames, frames, constraintIndex);
else if (timelineName == "mass")
timeline = new PhysicsConstraintMassTimeline(frames, frames, constraintIndex);
else if (timelineName == "wind")
timeline = new PhysicsConstraintWindTimeline(frames, frames, constraintIndex);
else if (timelineName == "gravity")
timeline = new PhysicsConstraintGravityTimeline(frames, frames, constraintIndex);
else if (timelineName == "mix")
timeline = new PhysicsConstraintMixTimeline(frames, frames, constraintIndex);
else
continue;
timelines.push(readTimeline12(timelineMap, timeline, 0, 1));
}
}
}
if (map.attachments) {
for (let attachmentsName in map.attachments) {
let attachmentsMap = map.attachments[attachmentsName];
let skin = skeletonData.findSkin(attachmentsName);
if (!skin)
throw new Error("Skin not found: " + attachmentsName);
for (let slotMapName in attachmentsMap) {
let slotMap = attachmentsMap[slotMapName];
let slot = skeletonData.findSlot(slotMapName);
if (!slot)
throw new Error("Slot not found: " + slotMapName);
let slotIndex = slot.index;
for (let attachmentMapName in slotMap) {
let attachmentMap = slotMap[attachmentMapName];
let attachment = skin.getAttachment(slotIndex, attachmentMapName);
for (let timelineMapName in attachmentMap) {
let timelineMap = attachmentMap[timelineMapName];
let keyMap = timelineMap[0];
if (!keyMap)
continue;
if (timelineMapName == "deform") {
let weighted = attachment.bones;
let vertices = attachment.vertices;
let deformLength = weighted ? vertices.length / 3 * 2 : vertices.length;
let timeline = new DeformTimeline(timelineMap.length, timelineMap.length, slotIndex, attachment);
let time = getValue(keyMap, "time", 0);
for (let frame = 0, bezier = 0; ; frame++) {
let deform;
let verticesValue = getValue(keyMap, "vertices", null);
if (!verticesValue)
deform = weighted ? Utils.newFloatArray(deformLength) : vertices;
else {
deform = Utils.newFloatArray(deformLength);
let start = getValue(keyMap, "offset", 0);
Utils.arrayCopy(verticesValue, 0, deform, start, verticesValue.length);
if (scale != 1) {
for (let i = start, n = i + verticesValue.length; i < n; i++)
deform[i] *= scale;
}
if (!weighted) {
for (let i = 0; i < deformLength; i++)
deform[i] += vertices[i];
}
}
timeline.setFrame(frame, time, deform);
let nextMap = timelineMap[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
break;
}
let time2 = getValue(nextMap, "time", 0);
let curve = keyMap.curve;
if (curve)
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, 0, 1, 1);
time = time2;
keyMap = nextMap;
}
timelines.push(timeline);
} else if (timelineMapName == "sequence") {
let timeline = new SequenceTimeline(timelineMap.length, slotIndex, attachment);
let lastDelay = 0;
for (let frame = 0; frame < timelineMap.length; frame++) {
let delay = getValue(keyMap, "delay", lastDelay);
let time = getValue(keyMap, "time", 0);
let mode = SequenceMode[getValue(keyMap, "mode", "hold")];
let index = getValue(keyMap, "index", 0);
timeline.setFrame(frame, time, mode, index, delay);
lastDelay = delay;
keyMap = timelineMap[frame + 1];
}
timelines.push(timeline);
}
}
}
}
}
}
if (map.drawOrder) {
let timeline = new DrawOrderTimeline(map.drawOrder.length);
let slotCount = skeletonData.slots.length;
let frame = 0;
for (let i = 0; i < map.drawOrder.length; i++, frame++) {
let drawOrderMap = map.drawOrder[i];
let drawOrder = null;
let offsets = getValue(drawOrderMap, "offsets", null);
if (offsets) {
drawOrder = Utils.newArray(slotCount, -1);
let unchanged = Utils.newArray(slotCount - offsets.length, 0);
let originalIndex = 0, unchangedIndex = 0;
for (let ii = 0; ii < offsets.length; ii++) {
let offsetMap = offsets[ii];
let slot = skeletonData.findSlot(offsetMap.slot);
if (!slot)
throw new Error("Slot not found: " + slot);
let slotIndex = slot.index;
while (originalIndex != slotIndex)
unchanged[unchangedIndex++] = originalIndex++;
drawOrder[originalIndex + offsetMap.offset] = originalIndex++;
}
while (originalIndex < slotCount)
unchanged[unchangedIndex++] = originalIndex++;
for (let ii = slotCount - 1; ii >= 0; ii--)
if (drawOrder[ii] == -1)
drawOrder[ii] = unchanged[--unchangedIndex];
}
timeline.setFrame(frame, getValue(drawOrderMap, "time", 0), drawOrder);
}
timelines.push(timeline);
}
if (map.events) {
let timeline = new EventTimeline(map.events.length);
let frame = 0;
for (let i = 0; i < map.events.length; i++, frame++) {
let eventMap = map.events[i];
let eventData = skeletonData.findEvent(eventMap.name);
if (!eventData)
throw new Error("Event not found: " + eventMap.name);
let event = new Event(Utils.toSinglePrecision(getValue(eventMap, "time", 0)), eventData);
event.intValue = getValue(eventMap, "int", eventData.intValue);
event.floatValue = getValue(eventMap, "float", eventData.floatValue);
event.stringValue = getValue(eventMap, "string", eventData.stringValue);
if (event.data.audioPath) {
event.volume = getValue(eventMap, "volume", 1);
event.balance = getValue(eventMap, "balance", 0);
}
timeline.setFrame(frame, event);
}
timelines.push(timeline);
}
let duration = 0;
for (let i = 0, n = timelines.length; i < n; i++)
duration = Math.max(duration, timelines[i].getDuration());
skeletonData.animations.push(new Animation(name, timelines, duration));
}
};
var LinkedMesh2 = class {
parent;
skin;
slotIndex;
mesh;
inheritTimeline;
constructor(mesh, skin, slotIndex, parent, inheritDeform) {
this.mesh = mesh;
this.skin = skin;
this.slotIndex = slotIndex;
this.parent = parent;
this.inheritTimeline = inheritDeform;
}
};
function readTimeline12(keys, timeline, defaultValue, scale) {
let keyMap = keys[0];
let time = getValue(keyMap, "time", 0);
let value = getValue(keyMap, "value", defaultValue) * scale;
let bezier = 0;
for (let frame = 0; ; frame++) {
timeline.setFrame(frame, time, value);
let nextMap = keys[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
return timeline;
}
let time2 = getValue(nextMap, "time", 0);
let value2 = getValue(nextMap, "value", defaultValue) * scale;
if (keyMap.curve)
bezier = readCurve(keyMap.curve, timeline, bezier, frame, 0, time, time2, value, value2, scale);
time = time2;
value = value2;
keyMap = nextMap;
}
}
function readTimeline22(keys, timeline, name1, name2, defaultValue, scale) {
let keyMap = keys[0];
let time = getValue(keyMap, "time", 0);
let value1 = getValue(keyMap, name1, defaultValue) * scale;
let value2 = getValue(keyMap, name2, defaultValue) * scale;
let bezier = 0;
for (let frame = 0; ; frame++) {
timeline.setFrame(frame, time, value1, value2);
let nextMap = keys[frame + 1];
if (!nextMap) {
timeline.shrink(bezier);
return timeline;
}
let time2 = getValue(nextMap, "time", 0);
let nvalue1 = getValue(nextMap, name1, defaultValue) * scale;
let nvalue2 = getValue(nextMap, name2, defaultValue) * scale;
let curve = keyMap.curve;
if (curve) {
bezier = readCurve(curve, timeline, bezier, frame, 0, time, time2, value1, nvalue1, scale);
bezier = readCurve(curve, timeline, bezier, frame, 1, time, time2, value2, nvalue2, scale);
}
time = time2;
value1 = nvalue1;
value2 = nvalue2;
keyMap = nextMap;
}
}
function readCurve(curve, timeline, bezier, frame, value, time1, time2, value1, value2, scale) {
if (curve == "stepped") {
timeline.setStepped(frame);
return bezier;
}
let i = value << 2;
let cx1 = curve[i];
let cy1 = curve[i + 1] * scale;
let cx2 = curve[i + 2];
let cy2 = curve[i + 3] * scale;
timeline.setBezier(bezier, frame, value, time1, value1, cx1, cy1, cx2, cy2, time2, value2);
return bezier + 1;
}
function getValue(map, property, defaultValue) {
return map[property] !== void 0 ? map[property] : defaultValue;
}
// spine-core/src/polyfills.ts
(() => {
if (typeof Math.fround === "undefined") {
Math.fround = function(array) {
return function(x) {
return array[0] = x, array[0];
};
}(new Float32Array(1));
}
})();
// spine-webgl/src/WebGL.ts
var ManagedWebGLRenderingContext = class {
canvas;
gl;
restorables = new Array();
constructor(canvasOrContext, contextConfig = { alpha: "true" }) {
if (!(canvasOrContext instanceof WebGLRenderingContext || typeof WebGL2RenderingContext !== "undefined" && canvasOrContext instanceof WebGL2RenderingContext)) {
let canvas = canvasOrContext;
this.gl = canvas.getContext("webgl2", contextConfig) || canvas.getContext("webgl", contextConfig);
this.canvas = canvas;
canvas.addEventListener("webglcontextlost", (e) => {
let event = e;
if (e)
e.preventDefault();
});
canvas.addEventListener("webglcontextrestored", (e) => {
for (let i = 0, n = this.restorables.length; i < n; i++)
this.restorables[i].restore();
});
} else {
this.gl = canvasOrContext;
this.canvas = this.gl.canvas;
}
}
addRestorable(restorable) {
this.restorables.push(restorable);
}
removeRestorable(restorable) {
let index = this.restorables.indexOf(restorable);
if (index > -1)
this.restorables.splice(index, 1);
}
};
// spine-webgl/src/GLTexture.ts
var _GLTexture = class extends Texture {
context;
texture = null;
boundUnit = 0;
useMipMaps = false;
constructor(context, image, useMipMaps = false) {
super(image);
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
this.useMipMaps = useMipMaps;
this.restore();
this.context.addRestorable(this);
}
setFilters(minFilter, magFilter) {
let gl = this.context.gl;
this.bind();
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, minFilter);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, _GLTexture.validateMagFilter(magFilter));
this.useMipMaps = _GLTexture.usesMipMaps(minFilter);
if (this.useMipMaps)
gl.generateMipmap(gl.TEXTURE_2D);
}
static validateMagFilter(magFilter) {
switch (magFilter) {
case 9987 /* MipMapLinearLinear */:
case 9985 /* MipMapLinearNearest */:
case 9986 /* MipMapNearestLinear */:
case 9984 /* MipMapNearestNearest */:
return 9729 /* Linear */;
default:
return magFilter;
}
}
static usesMipMaps(filter) {
switch (filter) {
case 9987 /* MipMapLinearLinear */:
case 9985 /* MipMapLinearNearest */:
case 9986 /* MipMapNearestLinear */:
case 9984 /* MipMapNearestNearest */:
return true;
default:
return false;
}
}
setWraps(uWrap, vWrap) {
let gl = this.context.gl;
this.bind();
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, uWrap);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, vWrap);
}
update(useMipMaps) {
let gl = this.context.gl;
if (!this.texture)
this.texture = this.context.gl.createTexture();
this.bind();
if (_GLTexture.DISABLE_UNPACK_PREMULTIPLIED_ALPHA_WEBGL)
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, this._image);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, useMipMaps ? gl.LINEAR_MIPMAP_LINEAR : gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
if (useMipMaps)
gl.generateMipmap(gl.TEXTURE_2D);
}
restore() {
this.texture = null;
this.update(this.useMipMaps);
}
bind(unit = 0) {
let gl = this.context.gl;
this.boundUnit = unit;
gl.activeTexture(gl.TEXTURE0 + unit);
gl.bindTexture(gl.TEXTURE_2D, this.texture);
}
unbind() {
let gl = this.context.gl;
gl.activeTexture(gl.TEXTURE0 + this.boundUnit);
gl.bindTexture(gl.TEXTURE_2D, null);
}
dispose() {
this.context.removeRestorable(this);
let gl = this.context.gl;
gl.deleteTexture(this.texture);
}
};
var GLTexture = _GLTexture;
__publicField(GLTexture, "DISABLE_UNPACK_PREMULTIPLIED_ALPHA_WEBGL", false);
// spine-webgl/src/AssetManager.ts
var AssetManager = class extends AssetManagerBase {
constructor(context, pathPrefix = "", downloader = new Downloader()) {
super((image) => {
return new GLTexture(context, image);
}, pathPrefix, downloader);
}
};
// spine-webgl/src/Vector3.ts
var Vector3 = class {
x = 0;
y = 0;
z = 0;
constructor(x = 0, y = 0, z = 0) {
this.x = x;
this.y = y;
this.z = z;
}
setFrom(v) {
this.x = v.x;
this.y = v.y;
this.z = v.z;
return this;
}
set(x, y, z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
add(v) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
return this;
}
sub(v) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
return this;
}
scale(s) {
this.x *= s;
this.y *= s;
this.z *= s;
return this;
}
normalize() {
let len = this.length();
if (len == 0)
return this;
len = 1 / len;
this.x *= len;
this.y *= len;
this.z *= len;
return this;
}
cross(v) {
return this.set(this.y * v.z - this.z * v.y, this.z * v.x - this.x * v.z, this.x * v.y - this.y * v.x);
}
multiply(matrix) {
let l_mat = matrix.values;
return this.set(
this.x * l_mat[M00] + this.y * l_mat[M01] + this.z * l_mat[M02] + l_mat[M03],
this.x * l_mat[M10] + this.y * l_mat[M11] + this.z * l_mat[M12] + l_mat[M13],
this.x * l_mat[M20] + this.y * l_mat[M21] + this.z * l_mat[M22] + l_mat[M23]
);
}
project(matrix) {
let l_mat = matrix.values;
let l_w = 1 / (this.x * l_mat[M30] + this.y * l_mat[M31] + this.z * l_mat[M32] + l_mat[M33]);
return this.set(
(this.x * l_mat[M00] + this.y * l_mat[M01] + this.z * l_mat[M02] + l_mat[M03]) * l_w,
(this.x * l_mat[M10] + this.y * l_mat[M11] + this.z * l_mat[M12] + l_mat[M13]) * l_w,
(this.x * l_mat[M20] + this.y * l_mat[M21] + this.z * l_mat[M22] + l_mat[M23]) * l_w
);
}
dot(v) {
return this.x * v.x + this.y * v.y + this.z * v.z;
}
length() {
return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
distance(v) {
let a = v.x - this.x;
let b = v.y - this.y;
let c = v.z - this.z;
return Math.sqrt(a * a + b * b + c * c);
}
};
// spine-webgl/src/Matrix4.ts
var M00 = 0;
var M01 = 4;
var M02 = 8;
var M03 = 12;
var M10 = 1;
var M11 = 5;
var M12 = 9;
var M13 = 13;
var M20 = 2;
var M21 = 6;
var M22 = 10;
var M23 = 14;
var M30 = 3;
var M31 = 7;
var M32 = 11;
var M33 = 15;
var _Matrix4 = class {
temp = new Float32Array(16);
values = new Float32Array(16);
constructor() {
let v = this.values;
v[M00] = 1;
v[M11] = 1;
v[M22] = 1;
v[M33] = 1;
}
set(values) {
this.values.set(values);
return this;
}
transpose() {
let t = this.temp;
let v = this.values;
t[M00] = v[M00];
t[M01] = v[M10];
t[M02] = v[M20];
t[M03] = v[M30];
t[M10] = v[M01];
t[M11] = v[M11];
t[M12] = v[M21];
t[M13] = v[M31];
t[M20] = v[M02];
t[M21] = v[M12];
t[M22] = v[M22];
t[M23] = v[M32];
t[M30] = v[M03];
t[M31] = v[M13];
t[M32] = v[M23];
t[M33] = v[M33];
return this.set(t);
}
identity() {
let v = this.values;
v[M00] = 1;
v[M01] = 0;
v[M02] = 0;
v[M03] = 0;
v[M10] = 0;
v[M11] = 1;
v[M12] = 0;
v[M13] = 0;
v[M20] = 0;
v[M21] = 0;
v[M22] = 1;
v[M23] = 0;
v[M30] = 0;
v[M31] = 0;
v[M32] = 0;
v[M33] = 1;
return this;
}
invert() {
let v = this.values;
let t = this.temp;
let l_det = v[M30] * v[M21] * v[M12] * v[M03] - v[M20] * v[M31] * v[M12] * v[M03] - v[M30] * v[M11] * v[M22] * v[M03] + v[M10] * v[M31] * v[M22] * v[M03] + v[M20] * v[M11] * v[M32] * v[M03] - v[M10] * v[M21] * v[M32] * v[M03] - v[M30] * v[M21] * v[M02] * v[M13] + v[M20] * v[M31] * v[M02] * v[M13] + v[M30] * v[M01] * v[M22] * v[M13] - v[M00] * v[M31] * v[M22] * v[M13] - v[M20] * v[M01] * v[M32] * v[M13] + v[M00] * v[M21] * v[M32] * v[M13] + v[M30] * v[M11] * v[M02] * v[M23] - v[M10] * v[M31] * v[M02] * v[M23] - v[M30] * v[M01] * v[M12] * v[M23] + v[M00] * v[M31] * v[M12] * v[M23] + v[M10] * v[M01] * v[M32] * v[M23] - v[M00] * v[M11] * v[M32] * v[M23] - v[M20] * v[M11] * v[M02] * v[M33] + v[M10] * v[M21] * v[M02] * v[M33] + v[M20] * v[M01] * v[M12] * v[M33] - v[M00] * v[M21] * v[M12] * v[M33] - v[M10] * v[M01] * v[M22] * v[M33] + v[M00] * v[M11] * v[M22] * v[M33];
if (l_det == 0)
throw new Error("non-invertible matrix");
let inv_det = 1 / l_det;
t[M00] = v[M12] * v[M23] * v[M31] - v[M13] * v[M22] * v[M31] + v[M13] * v[M21] * v[M32] - v[M11] * v[M23] * v[M32] - v[M12] * v[M21] * v[M33] + v[M11] * v[M22] * v[M33];
t[M01] = v[M03] * v[M22] * v[M31] - v[M02] * v[M23] * v[M31] - v[M03] * v[M21] * v[M32] + v[M01] * v[M23] * v[M32] + v[M02] * v[M21] * v[M33] - v[M01] * v[M22] * v[M33];
t[M02] = v[M02] * v[M13] * v[M31] - v[M03] * v[M12] * v[M31] + v[M03] * v[M11] * v[M32] - v[M01] * v[M13] * v[M32] - v[M02] * v[M11] * v[M33] + v[M01] * v[M12] * v[M33];
t[M03] = v[M03] * v[M12] * v[M21] - v[M02] * v[M13] * v[M21] - v[M03] * v[M11] * v[M22] + v[M01] * v[M13] * v[M22] + v[M02] * v[M11] * v[M23] - v[M01] * v[M12] * v[M23];
t[M10] = v[M13] * v[M22] * v[M30] - v[M12] * v[M23] * v[M30] - v[M13] * v[M20] * v[M32] + v[M10] * v[M23] * v[M32] + v[M12] * v[M20] * v[M33] - v[M10] * v[M22] * v[M33];
t[M11] = v[M02] * v[M23] * v[M30] - v[M03] * v[M22] * v[M30] + v[M03] * v[M20] * v[M32] - v[M00] * v[M23] * v[M32] - v[M02] * v[M20] * v[M33] + v[M00] * v[M22] * v[M33];
t[M12] = v[M03] * v[M12] * v[M30] - v[M02] * v[M13] * v[M30] - v[M03] * v[M10] * v[M32] + v[M00] * v[M13] * v[M32] + v[M02] * v[M10] * v[M33] - v[M00] * v[M12] * v[M33];
t[M13] = v[M02] * v[M13] * v[M20] - v[M03] * v[M12] * v[M20] + v[M03] * v[M10] * v[M22] - v[M00] * v[M13] * v[M22] - v[M02] * v[M10] * v[M23] + v[M00] * v[M12] * v[M23];
t[M20] = v[M11] * v[M23] * v[M30] - v[M13] * v[M21] * v[M30] + v[M13] * v[M20] * v[M31] - v[M10] * v[M23] * v[M31] - v[M11] * v[M20] * v[M33] + v[M10] * v[M21] * v[M33];
t[M21] = v[M03] * v[M21] * v[M30] - v[M01] * v[M23] * v[M30] - v[M03] * v[M20] * v[M31] + v[M00] * v[M23] * v[M31] + v[M01] * v[M20] * v[M33] - v[M00] * v[M21] * v[M33];
t[M22] = v[M01] * v[M13] * v[M30] - v[M03] * v[M11] * v[M30] + v[M03] * v[M10] * v[M31] - v[M00] * v[M13] * v[M31] - v[M01] * v[M10] * v[M33] + v[M00] * v[M11] * v[M33];
t[M23] = v[M03] * v[M11] * v[M20] - v[M01] * v[M13] * v[M20] - v[M03] * v[M10] * v[M21] + v[M00] * v[M13] * v[M21] + v[M01] * v[M10] * v[M23] - v[M00] * v[M11] * v[M23];
t[M30] = v[M12] * v[M21] * v[M30] - v[M11] * v[M22] * v[M30] - v[M12] * v[M20] * v[M31] + v[M10] * v[M22] * v[M31] + v[M11] * v[M20] * v[M32] - v[M10] * v[M21] * v[M32];
t[M31] = v[M01] * v[M22] * v[M30] - v[M02] * v[M21] * v[M30] + v[M02] * v[M20] * v[M31] - v[M00] * v[M22] * v[M31] - v[M01] * v[M20] * v[M32] + v[M00] * v[M21] * v[M32];
t[M32] = v[M02] * v[M11] * v[M30] - v[M01] * v[M12] * v[M30] - v[M02] * v[M10] * v[M31] + v[M00] * v[M12] * v[M31] + v[M01] * v[M10] * v[M32] - v[M00] * v[M11] * v[M32];
t[M33] = v[M01] * v[M12] * v[M20] - v[M02] * v[M11] * v[M20] + v[M02] * v[M10] * v[M21] - v[M00] * v[M12] * v[M21] - v[M01] * v[M10] * v[M22] + v[M00] * v[M11] * v[M22];
v[M00] = t[M00] * inv_det;
v[M01] = t[M01] * inv_det;
v[M02] = t[M02] * inv_det;
v[M03] = t[M03] * inv_det;
v[M10] = t[M10] * inv_det;
v[M11] = t[M11] * inv_det;
v[M12] = t[M12] * inv_det;
v[M13] = t[M13] * inv_det;
v[M20] = t[M20] * inv_det;
v[M21] = t[M21] * inv_det;
v[M22] = t[M22] * inv_det;
v[M23] = t[M23] * inv_det;
v[M30] = t[M30] * inv_det;
v[M31] = t[M31] * inv_det;
v[M32] = t[M32] * inv_det;
v[M33] = t[M33] * inv_det;
return this;
}
determinant() {
let v = this.values;
return v[M30] * v[M21] * v[M12] * v[M03] - v[M20] * v[M31] * v[M12] * v[M03] - v[M30] * v[M11] * v[M22] * v[M03] + v[M10] * v[M31] * v[M22] * v[M03] + v[M20] * v[M11] * v[M32] * v[M03] - v[M10] * v[M21] * v[M32] * v[M03] - v[M30] * v[M21] * v[M02] * v[M13] + v[M20] * v[M31] * v[M02] * v[M13] + v[M30] * v[M01] * v[M22] * v[M13] - v[M00] * v[M31] * v[M22] * v[M13] - v[M20] * v[M01] * v[M32] * v[M13] + v[M00] * v[M21] * v[M32] * v[M13] + v[M30] * v[M11] * v[M02] * v[M23] - v[M10] * v[M31] * v[M02] * v[M23] - v[M30] * v[M01] * v[M12] * v[M23] + v[M00] * v[M31] * v[M12] * v[M23] + v[M10] * v[M01] * v[M32] * v[M23] - v[M00] * v[M11] * v[M32] * v[M23] - v[M20] * v[M11] * v[M02] * v[M33] + v[M10] * v[M21] * v[M02] * v[M33] + v[M20] * v[M01] * v[M12] * v[M33] - v[M00] * v[M21] * v[M12] * v[M33] - v[M10] * v[M01] * v[M22] * v[M33] + v[M00] * v[M11] * v[M22] * v[M33];
}
translate(x, y, z) {
let v = this.values;
v[M03] += x;
v[M13] += y;
v[M23] += z;
return this;
}
copy() {
return new _Matrix4().set(this.values);
}
projection(near, far, fovy, aspectRatio) {
this.identity();
let l_fd = 1 / Math.tan(fovy * (Math.PI / 180) / 2);
let l_a1 = (far + near) / (near - far);
let l_a2 = 2 * far * near / (near - far);
let v = this.values;
v[M00] = l_fd / aspectRatio;
v[M10] = 0;
v[M20] = 0;
v[M30] = 0;
v[M01] = 0;
v[M11] = l_fd;
v[M21] = 0;
v[M31] = 0;
v[M02] = 0;
v[M12] = 0;
v[M22] = l_a1;
v[M32] = -1;
v[M03] = 0;
v[M13] = 0;
v[M23] = l_a2;
v[M33] = 0;
return this;
}
ortho2d(x, y, width, height) {
return this.ortho(x, x + width, y, y + height, 0, 1);
}
ortho(left, right, bottom, top, near, far) {
this.identity();
let x_orth = 2 / (right - left);
let y_orth = 2 / (top - bottom);
let z_orth = -2 / (far - near);
let tx = -(right + left) / (right - left);
let ty = -(top + bottom) / (top - bottom);
let tz = -(far + near) / (far - near);
let v = this.values;
v[M00] = x_orth;
v[M10] = 0;
v[M20] = 0;
v[M30] = 0;
v[M01] = 0;
v[M11] = y_orth;
v[M21] = 0;
v[M31] = 0;
v[M02] = 0;
v[M12] = 0;
v[M22] = z_orth;
v[M32] = 0;
v[M03] = tx;
v[M13] = ty;
v[M23] = tz;
v[M33] = 1;
return this;
}
multiply(matrix) {
let t = this.temp;
let v = this.values;
let m = matrix.values;
t[M00] = v[M00] * m[M00] + v[M01] * m[M10] + v[M02] * m[M20] + v[M03] * m[M30];
t[M01] = v[M00] * m[M01] + v[M01] * m[M11] + v[M02] * m[M21] + v[M03] * m[M31];
t[M02] = v[M00] * m[M02] + v[M01] * m[M12] + v[M02] * m[M22] + v[M03] * m[M32];
t[M03] = v[M00] * m[M03] + v[M01] * m[M13] + v[M02] * m[M23] + v[M03] * m[M33];
t[M10] = v[M10] * m[M00] + v[M11] * m[M10] + v[M12] * m[M20] + v[M13] * m[M30];
t[M11] = v[M10] * m[M01] + v[M11] * m[M11] + v[M12] * m[M21] + v[M13] * m[M31];
t[M12] = v[M10] * m[M02] + v[M11] * m[M12] + v[M12] * m[M22] + v[M13] * m[M32];
t[M13] = v[M10] * m[M03] + v[M11] * m[M13] + v[M12] * m[M23] + v[M13] * m[M33];
t[M20] = v[M20] * m[M00] + v[M21] * m[M10] + v[M22] * m[M20] + v[M23] * m[M30];
t[M21] = v[M20] * m[M01] + v[M21] * m[M11] + v[M22] * m[M21] + v[M23] * m[M31];
t[M22] = v[M20] * m[M02] + v[M21] * m[M12] + v[M22] * m[M22] + v[M23] * m[M32];
t[M23] = v[M20] * m[M03] + v[M21] * m[M13] + v[M22] * m[M23] + v[M23] * m[M33];
t[M30] = v[M30] * m[M00] + v[M31] * m[M10] + v[M32] * m[M20] + v[M33] * m[M30];
t[M31] = v[M30] * m[M01] + v[M31] * m[M11] + v[M32] * m[M21] + v[M33] * m[M31];
t[M32] = v[M30] * m[M02] + v[M31] * m[M12] + v[M32] * m[M22] + v[M33] * m[M32];
t[M33] = v[M30] * m[M03] + v[M31] * m[M13] + v[M32] * m[M23] + v[M33] * m[M33];
return this.set(this.temp);
}
multiplyLeft(matrix) {
let t = this.temp;
let v = this.values;
let m = matrix.values;
t[M00] = m[M00] * v[M00] + m[M01] * v[M10] + m[M02] * v[M20] + m[M03] * v[M30];
t[M01] = m[M00] * v[M01] + m[M01] * v[M11] + m[M02] * v[M21] + m[M03] * v[M31];
t[M02] = m[M00] * v[M02] + m[M01] * v[M12] + m[M02] * v[M22] + m[M03] * v[M32];
t[M03] = m[M00] * v[M03] + m[M01] * v[M13] + m[M02] * v[M23] + m[M03] * v[M33];
t[M10] = m[M10] * v[M00] + m[M11] * v[M10] + m[M12] * v[M20] + m[M13] * v[M30];
t[M11] = m[M10] * v[M01] + m[M11] * v[M11] + m[M12] * v[M21] + m[M13] * v[M31];
t[M12] = m[M10] * v[M02] + m[M11] * v[M12] + m[M12] * v[M22] + m[M13] * v[M32];
t[M13] = m[M10] * v[M03] + m[M11] * v[M13] + m[M12] * v[M23] + m[M13] * v[M33];
t[M20] = m[M20] * v[M00] + m[M21] * v[M10] + m[M22] * v[M20] + m[M23] * v[M30];
t[M21] = m[M20] * v[M01] + m[M21] * v[M11] + m[M22] * v[M21] + m[M23] * v[M31];
t[M22] = m[M20] * v[M02] + m[M21] * v[M12] + m[M22] * v[M22] + m[M23] * v[M32];
t[M23] = m[M20] * v[M03] + m[M21] * v[M13] + m[M22] * v[M23] + m[M23] * v[M33];
t[M30] = m[M30] * v[M00] + m[M31] * v[M10] + m[M32] * v[M20] + m[M33] * v[M30];
t[M31] = m[M30] * v[M01] + m[M31] * v[M11] + m[M32] * v[M21] + m[M33] * v[M31];
t[M32] = m[M30] * v[M02] + m[M31] * v[M12] + m[M32] * v[M22] + m[M33] * v[M32];
t[M33] = m[M30] * v[M03] + m[M31] * v[M13] + m[M32] * v[M23] + m[M33] * v[M33];
return this.set(this.temp);
}
lookAt(position, direction, up) {
let xAxis = _Matrix4.xAxis, yAxis = _Matrix4.yAxis, zAxis = _Matrix4.zAxis;
zAxis.setFrom(direction).normalize();
xAxis.setFrom(direction).normalize();
xAxis.cross(up).normalize();
yAxis.setFrom(xAxis).cross(zAxis).normalize();
this.identity();
let val = this.values;
val[M00] = xAxis.x;
val[M01] = xAxis.y;
val[M02] = xAxis.z;
val[M10] = yAxis.x;
val[M11] = yAxis.y;
val[M12] = yAxis.z;
val[M20] = -zAxis.x;
val[M21] = -zAxis.y;
val[M22] = -zAxis.z;
_Matrix4.tmpMatrix.identity();
_Matrix4.tmpMatrix.values[M03] = -position.x;
_Matrix4.tmpMatrix.values[M13] = -position.y;
_Matrix4.tmpMatrix.values[M23] = -position.z;
this.multiply(_Matrix4.tmpMatrix);
return this;
}
};
var Matrix42 = _Matrix4;
__publicField(Matrix42, "xAxis", new Vector3());
__publicField(Matrix42, "yAxis", new Vector3());
__publicField(Matrix42, "zAxis", new Vector3());
__publicField(Matrix42, "tmpMatrix", new _Matrix4());
// spine-webgl/src/Camera.ts
var OrthoCamera = class {
position = new Vector3(0, 0, 0);
direction = new Vector3(0, 0, -1);
up = new Vector3(0, 1, 0);
near = 0;
far = 100;
zoom = 1;
viewportWidth = 0;
viewportHeight = 0;
projectionView = new Matrix42();
inverseProjectionView = new Matrix42();
projection = new Matrix42();
view = new Matrix42();
constructor(viewportWidth, viewportHeight) {
this.viewportWidth = viewportWidth;
this.viewportHeight = viewportHeight;
this.update();
}
update() {
let projection = this.projection;
let view = this.view;
let projectionView = this.projectionView;
let inverseProjectionView = this.inverseProjectionView;
let zoom = this.zoom, viewportWidth = this.viewportWidth, viewportHeight = this.viewportHeight;
projection.ortho(
zoom * (-viewportWidth / 2),
zoom * (viewportWidth / 2),
zoom * (-viewportHeight / 2),
zoom * (viewportHeight / 2),
this.near,
this.far
);
view.lookAt(this.position, this.direction, this.up);
projectionView.set(projection.values);
projectionView.multiply(view);
inverseProjectionView.set(projectionView.values).invert();
}
screenToWorld(screenCoords, screenWidth, screenHeight) {
let x = screenCoords.x, y = screenHeight - screenCoords.y - 1;
screenCoords.x = 2 * x / screenWidth - 1;
screenCoords.y = 2 * y / screenHeight - 1;
screenCoords.z = 2 * screenCoords.z - 1;
screenCoords.project(this.inverseProjectionView);
return screenCoords;
}
worldToScreen(worldCoords, screenWidth, screenHeight) {
worldCoords.project(this.projectionView);
worldCoords.x = screenWidth * (worldCoords.x + 1) / 2;
worldCoords.y = screenHeight * (worldCoords.y + 1) / 2;
worldCoords.z = (worldCoords.z + 1) / 2;
return worldCoords;
}
setViewport(viewportWidth, viewportHeight) {
this.viewportWidth = viewportWidth;
this.viewportHeight = viewportHeight;
}
};
// spine-webgl/src/Input.ts
var Input = class {
element;
mouseX = 0;
mouseY = 0;
buttonDown = false;
touch0 = null;
touch1 = null;
initialPinchDistance = 0;
listeners = new Array();
eventListeners = [];
constructor(element) {
this.element = element;
this.setupCallbacks(element);
}
setupCallbacks(element) {
let mouseDown = (ev) => {
if (ev instanceof MouseEvent) {
let rect = element.getBoundingClientRect();
this.mouseX = ev.clientX - rect.left;
;
this.mouseY = ev.clientY - rect.top;
this.buttonDown = true;
this.listeners.map((listener) => {
if (listener.down)
listener.down(this.mouseX, this.mouseY);
});
document.addEventListener("mousemove", mouseMove);
document.addEventListener("mouseup", mouseUp);
}
};
let mouseMove = (ev) => {
if (ev instanceof MouseEvent) {
let rect = element.getBoundingClientRect();
this.mouseX = ev.clientX - rect.left;
;
this.mouseY = ev.clientY - rect.top;
this.listeners.map((listener) => {
if (this.buttonDown) {
if (listener.dragged)
listener.dragged(this.mouseX, this.mouseY);
} else {
if (listener.moved)
listener.moved(this.mouseX, this.mouseY);
}
});
}
};
let mouseUp = (ev) => {
if (ev instanceof MouseEvent) {
let rect = element.getBoundingClientRect();
this.mouseX = ev.clientX - rect.left;
;
this.mouseY = ev.clientY - rect.top;
this.buttonDown = false;
this.listeners.map((listener) => {
if (listener.up)
listener.up(this.mouseX, this.mouseY);
});
document.removeEventListener("mousemove", mouseMove);
document.removeEventListener("mouseup", mouseUp);
}
};
let mouseWheel = (e) => {
e.preventDefault();
let deltaY = e.deltaY;
if (e.deltaMode == WheelEvent.DOM_DELTA_LINE)
deltaY *= 8;
if (e.deltaMode == WheelEvent.DOM_DELTA_PAGE)
deltaY *= 24;
this.listeners.map((listener) => {
if (listener.wheel)
listener.wheel(e.deltaY);
});
};
element.addEventListener("mousedown", mouseDown, true);
element.addEventListener("mousemove", mouseMove, true);
element.addEventListener("mouseup", mouseUp, true);
element.addEventListener("wheel", mouseWheel, true);
element.addEventListener("touchstart", (ev) => {
if (!this.touch0 || !this.touch1) {
var touches = ev.changedTouches;
let nativeTouch = touches.item(0);
if (!nativeTouch)
return;
let rect = element.getBoundingClientRect();
let x = nativeTouch.clientX - rect.left;
let y = nativeTouch.clientY - rect.top;
let touch = new Touch(nativeTouch.identifier, x, y);
this.mouseX = x;
this.mouseY = y;
this.buttonDown = true;
if (!this.touch0) {
this.touch0 = touch;
this.listeners.map((listener) => {
if (listener.down)
listener.down(touch.x, touch.y);
});
} else if (!this.touch1) {
this.touch1 = touch;
let dx = this.touch1.x - this.touch0.x;
let dy = this.touch1.x - this.touch0.x;
this.initialPinchDistance = Math.sqrt(dx * dx + dy * dy);
this.listeners.map((listener) => {
if (listener.zoom)
listener.zoom(this.initialPinchDistance, this.initialPinchDistance);
});
}
}
ev.preventDefault();
}, false);
element.addEventListener("touchmove", (ev) => {
if (this.touch0) {
var touches = ev.changedTouches;
let rect = element.getBoundingClientRect();
for (var i = 0; i < touches.length; i++) {
var nativeTouch = touches[i];
let x = nativeTouch.clientX - rect.left;
let y = nativeTouch.clientY - rect.top;
if (this.touch0.identifier === nativeTouch.identifier) {
this.touch0.x = this.mouseX = x;
this.touch0.y = this.mouseY = y;
this.listeners.map((listener) => {
if (listener.dragged)
listener.dragged(x, y);
});
}
if (this.touch1 && this.touch1.identifier === nativeTouch.identifier) {
this.touch1.x = this.mouseX = x;
this.touch1.y = this.mouseY = y;
}
}
if (this.touch0 && this.touch1) {
let dx = this.touch1.x - this.touch0.x;
let dy = this.touch1.x - this.touch0.x;
let distance = Math.sqrt(dx * dx + dy * dy);
this.listeners.map((listener) => {
if (listener.zoom)
listener.zoom(this.initialPinchDistance, distance);
});
}
}
ev.preventDefault();
}, false);
let touchEnd = (ev) => {
if (this.touch0) {
var touches = ev.changedTouches;
let rect = element.getBoundingClientRect();
for (var i = 0; i < touches.length; i++) {
var nativeTouch = touches[i];
let x = nativeTouch.clientX - rect.left;
let y = nativeTouch.clientY - rect.top;
if (this.touch0.identifier === nativeTouch.identifier) {
this.touch0 = null;
this.mouseX = x;
this.mouseY = y;
this.listeners.map((listener) => {
if (listener.up)
listener.up(x, y);
});
if (!this.touch1) {
this.buttonDown = false;
break;
} else {
this.touch0 = this.touch1;
this.touch1 = null;
this.mouseX = this.touch0.x;
this.mouseX = this.touch0.x;
this.buttonDown = true;
this.listeners.map((listener) => {
if (listener.down)
listener.down(this.touch0.x, this.touch0.y);
});
}
}
if (this.touch1 && this.touch1.identifier) {
this.touch1 = null;
}
}
}
ev.preventDefault();
};
element.addEventListener("touchend", touchEnd, false);
element.addEventListener("touchcancel", touchEnd);
}
addListener(listener) {
this.listeners.push(listener);
}
removeListener(listener) {
let idx = this.listeners.indexOf(listener);
if (idx > -1) {
this.listeners.splice(idx, 1);
}
}
};
var Touch = class {
constructor(identifier, x, y) {
this.identifier = identifier;
this.x = x;
this.y = y;
}
};
// spine-webgl/src/CameraController.ts
var CameraController = class {
constructor(canvas, camera) {
this.canvas = canvas;
this.camera = camera;
let cameraX = 0, cameraY = 0, cameraZoom = 0;
let mouseX = 0, mouseY = 0;
let lastX = 0, lastY = 0;
let initialZoom = 0;
new Input(canvas).addListener({
down: (x, y) => {
cameraX = camera.position.x;
cameraY = camera.position.y;
mouseX = lastX = x;
mouseY = lastY = y;
initialZoom = camera.zoom;
},
dragged: (x, y) => {
let deltaX = x - mouseX;
let deltaY = y - mouseY;
let originWorld = camera.screenToWorld(new Vector3(0, 0), canvas.clientWidth, canvas.clientHeight);
let deltaWorld = camera.screenToWorld(new Vector3(deltaX, deltaY), canvas.clientWidth, canvas.clientHeight).sub(originWorld);
camera.position.set(cameraX - deltaWorld.x, cameraY - deltaWorld.y, 0);
camera.update();
lastX = x;
lastY = y;
},
wheel: (delta) => {
let zoomAmount = delta / 200 * camera.zoom;
let newZoom = camera.zoom + zoomAmount;
if (newZoom > 0) {
let x = 0, y = 0;
if (delta < 0) {
x = lastX;
y = lastY;
} else {
let viewCenter = new Vector3(canvas.clientWidth / 2 + 15, canvas.clientHeight / 2);
let mouseToCenterX = lastX - viewCenter.x;
let mouseToCenterY = canvas.clientHeight - 1 - lastY - viewCenter.y;
x = viewCenter.x - mouseToCenterX;
y = canvas.clientHeight - 1 - viewCenter.y + mouseToCenterY;
}
let oldDistance = camera.screenToWorld(new Vector3(x, y), canvas.clientWidth, canvas.clientHeight);
camera.zoom = newZoom;
camera.update();
let newDistance = camera.screenToWorld(new Vector3(x, y), canvas.clientWidth, canvas.clientHeight);
camera.position.add(oldDistance.sub(newDistance));
camera.update();
}
},
zoom: (initialDistance, distance) => {
let newZoom = initialDistance / distance;
camera.zoom = initialZoom * newZoom;
},
up: (x, y) => {
lastX = x;
lastY = y;
},
moved: (x, y) => {
lastX = x;
lastY = y;
}
});
}
};
// spine-webgl/src/Shader.ts
var _Shader = class {
constructor(context, vertexShader, fragmentShader) {
this.vertexShader = vertexShader;
this.fragmentShader = fragmentShader;
this.vsSource = vertexShader;
this.fsSource = fragmentShader;
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
this.context.addRestorable(this);
this.compile();
}
context;
vs = null;
vsSource;
fs = null;
fsSource;
program = null;
tmp2x2 = new Float32Array(2 * 2);
tmp3x3 = new Float32Array(3 * 3);
tmp4x4 = new Float32Array(4 * 4);
getProgram() {
return this.program;
}
getVertexShader() {
return this.vertexShader;
}
getFragmentShader() {
return this.fragmentShader;
}
getVertexShaderSource() {
return this.vsSource;
}
getFragmentSource() {
return this.fsSource;
}
compile() {
let gl = this.context.gl;
try {
this.vs = this.compileShader(gl.VERTEX_SHADER, this.vertexShader);
if (!this.vs)
throw new Error("Couldn't compile vertex shader.");
this.fs = this.compileShader(gl.FRAGMENT_SHADER, this.fragmentShader);
if (!this.fs)
throw new Error("Couldn#t compile fragment shader.");
this.program = this.compileProgram(this.vs, this.fs);
} catch (e) {
this.dispose();
throw e;
}
}
compileShader(type, source) {
let gl = this.context.gl;
let shader = gl.createShader(type);
if (!shader)
throw new Error("Couldn't create shader.");
gl.shaderSource(shader, source);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
let error = "Couldn't compile shader: " + gl.getShaderInfoLog(shader);
gl.deleteShader(shader);
if (!gl.isContextLost())
throw new Error(error);
}
return shader;
}
compileProgram(vs, fs) {
let gl = this.context.gl;
let program = gl.createProgram();
if (!program)
throw new Error("Couldn't compile program.");
gl.attachShader(program, vs);
gl.attachShader(program, fs);
gl.linkProgram(program);
if (!gl.getProgramParameter(program, gl.LINK_STATUS)) {
let error = "Couldn't compile shader program: " + gl.getProgramInfoLog(program);
gl.deleteProgram(program);
if (!gl.isContextLost())
throw new Error(error);
}
return program;
}
restore() {
this.compile();
}
bind() {
this.context.gl.useProgram(this.program);
}
unbind() {
this.context.gl.useProgram(null);
}
setUniformi(uniform, value) {
this.context.gl.uniform1i(this.getUniformLocation(uniform), value);
}
setUniformf(uniform, value) {
this.context.gl.uniform1f(this.getUniformLocation(uniform), value);
}
setUniform2f(uniform, value, value2) {
this.context.gl.uniform2f(this.getUniformLocation(uniform), value, value2);
}
setUniform3f(uniform, value, value2, value3) {
this.context.gl.uniform3f(this.getUniformLocation(uniform), value, value2, value3);
}
setUniform4f(uniform, value, value2, value3, value4) {
this.context.gl.uniform4f(this.getUniformLocation(uniform), value, value2, value3, value4);
}
setUniform2x2f(uniform, value) {
let gl = this.context.gl;
this.tmp2x2.set(value);
gl.uniformMatrix2fv(this.getUniformLocation(uniform), false, this.tmp2x2);
}
setUniform3x3f(uniform, value) {
let gl = this.context.gl;
this.tmp3x3.set(value);
gl.uniformMatrix3fv(this.getUniformLocation(uniform), false, this.tmp3x3);
}
setUniform4x4f(uniform, value) {
let gl = this.context.gl;
this.tmp4x4.set(value);
gl.uniformMatrix4fv(this.getUniformLocation(uniform), false, this.tmp4x4);
}
getUniformLocation(uniform) {
let gl = this.context.gl;
if (!this.program)
throw new Error("Shader not compiled.");
let location = gl.getUniformLocation(this.program, uniform);
if (!location && !gl.isContextLost())
throw new Error(`Couldn't find location for uniform ${uniform}`);
return location;
}
getAttributeLocation(attribute) {
let gl = this.context.gl;
if (!this.program)
throw new Error("Shader not compiled.");
let location = gl.getAttribLocation(this.program, attribute);
if (location == -1 && !gl.isContextLost())
throw new Error(`Couldn't find location for attribute ${attribute}`);
return location;
}
dispose() {
this.context.removeRestorable(this);
let gl = this.context.gl;
if (this.vs) {
gl.deleteShader(this.vs);
this.vs = null;
}
if (this.fs) {
gl.deleteShader(this.fs);
this.fs = null;
}
if (this.program) {
gl.deleteProgram(this.program);
this.program = null;
}
}
static newColoredTextured(context) {
let vs = `
attribute vec4 ${_Shader.POSITION};
attribute vec4 ${_Shader.COLOR};
attribute vec2 ${_Shader.TEXCOORDS};
uniform mat4 ${_Shader.MVP_MATRIX};
varying vec4 v_color;
varying vec2 v_texCoords;
void main () {
v_color = ${_Shader.COLOR};
v_texCoords = ${_Shader.TEXCOORDS};
gl_Position = ${_Shader.MVP_MATRIX} * ${_Shader.POSITION};
}
`;
let fs = `
#ifdef GL_ES
#define LOWP lowp
precision mediump float;
#else
#define LOWP
#endif
varying LOWP vec4 v_color;
varying vec2 v_texCoords;
uniform sampler2D u_texture;
void main () {
gl_FragColor = v_color * texture2D(u_texture, v_texCoords);
}
`;
return new _Shader(context, vs, fs);
}
static newTwoColoredTextured(context) {
let vs = `
attribute vec4 ${_Shader.POSITION};
attribute vec4 ${_Shader.COLOR};
attribute vec4 ${_Shader.COLOR2};
attribute vec2 ${_Shader.TEXCOORDS};
uniform mat4 ${_Shader.MVP_MATRIX};
varying vec4 v_light;
varying vec4 v_dark;
varying vec2 v_texCoords;
void main () {
v_light = ${_Shader.COLOR};
v_dark = ${_Shader.COLOR2};
v_texCoords = ${_Shader.TEXCOORDS};
gl_Position = ${_Shader.MVP_MATRIX} * ${_Shader.POSITION};
}
`;
let fs = `
#ifdef GL_ES
#define LOWP lowp
precision mediump float;
#else
#define LOWP
#endif
varying LOWP vec4 v_light;
varying LOWP vec4 v_dark;
varying vec2 v_texCoords;
uniform sampler2D u_texture;
void main () {
vec4 texColor = texture2D(u_texture, v_texCoords);
gl_FragColor.a = texColor.a * v_light.a;
gl_FragColor.rgb = ((texColor.a - 1.0) * v_dark.a + 1.0 - texColor.rgb) * v_dark.rgb + texColor.rgb * v_light.rgb;
}
`;
return new _Shader(context, vs, fs);
}
static newColored(context) {
let vs = `
attribute vec4 ${_Shader.POSITION};
attribute vec4 ${_Shader.COLOR};
uniform mat4 ${_Shader.MVP_MATRIX};
varying vec4 v_color;
void main () {
v_color = ${_Shader.COLOR};
gl_Position = ${_Shader.MVP_MATRIX} * ${_Shader.POSITION};
}
`;
let fs = `
#ifdef GL_ES
#define LOWP lowp
precision mediump float;
#else
#define LOWP
#endif
varying LOWP vec4 v_color;
void main () {
gl_FragColor = v_color;
}
`;
return new _Shader(context, vs, fs);
}
};
var Shader = _Shader;
__publicField(Shader, "MVP_MATRIX", "u_projTrans");
__publicField(Shader, "POSITION", "a_position");
__publicField(Shader, "COLOR", "a_color");
__publicField(Shader, "COLOR2", "a_color2");
__publicField(Shader, "TEXCOORDS", "a_texCoords");
__publicField(Shader, "SAMPLER", "u_texture");
// spine-webgl/src/Mesh.ts
var Mesh = class {
constructor(context, attributes, maxVertices, maxIndices) {
this.attributes = attributes;
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
this.elementsPerVertex = 0;
for (let i = 0; i < attributes.length; i++) {
this.elementsPerVertex += attributes[i].numElements;
}
this.vertices = new Float32Array(maxVertices * this.elementsPerVertex);
this.indices = new Uint16Array(maxIndices);
this.context.addRestorable(this);
}
context;
vertices;
verticesBuffer = null;
verticesLength = 0;
dirtyVertices = false;
indices;
indicesBuffer = null;
indicesLength = 0;
dirtyIndices = false;
elementsPerVertex = 0;
getAttributes() {
return this.attributes;
}
maxVertices() {
return this.vertices.length / this.elementsPerVertex;
}
numVertices() {
return this.verticesLength / this.elementsPerVertex;
}
setVerticesLength(length) {
this.dirtyVertices = true;
this.verticesLength = length;
}
getVertices() {
return this.vertices;
}
maxIndices() {
return this.indices.length;
}
numIndices() {
return this.indicesLength;
}
setIndicesLength(length) {
this.dirtyIndices = true;
this.indicesLength = length;
}
getIndices() {
return this.indices;
}
getVertexSizeInFloats() {
let size = 0;
for (var i = 0; i < this.attributes.length; i++) {
let attribute = this.attributes[i];
size += attribute.numElements;
}
return size;
}
setVertices(vertices) {
this.dirtyVertices = true;
if (vertices.length > this.vertices.length)
throw Error("Mesh can't store more than " + this.maxVertices() + " vertices");
this.vertices.set(vertices, 0);
this.verticesLength = vertices.length;
}
setIndices(indices) {
this.dirtyIndices = true;
if (indices.length > this.indices.length)
throw Error("Mesh can't store more than " + this.maxIndices() + " indices");
this.indices.set(indices, 0);
this.indicesLength = indices.length;
}
draw(shader, primitiveType) {
this.drawWithOffset(shader, primitiveType, 0, this.indicesLength > 0 ? this.indicesLength : this.verticesLength / this.elementsPerVertex);
}
drawWithOffset(shader, primitiveType, offset, count) {
let gl = this.context.gl;
if (this.dirtyVertices || this.dirtyIndices)
this.update();
this.bind(shader);
if (this.indicesLength > 0) {
gl.drawElements(primitiveType, count, gl.UNSIGNED_SHORT, offset * 2);
} else {
gl.drawArrays(primitiveType, offset, count);
}
this.unbind(shader);
}
bind(shader) {
let gl = this.context.gl;
gl.bindBuffer(gl.ARRAY_BUFFER, this.verticesBuffer);
let offset = 0;
for (let i = 0; i < this.attributes.length; i++) {
let attrib = this.attributes[i];
let location = shader.getAttributeLocation(attrib.name);
gl.enableVertexAttribArray(location);
gl.vertexAttribPointer(location, attrib.numElements, gl.FLOAT, false, this.elementsPerVertex * 4, offset * 4);
offset += attrib.numElements;
}
if (this.indicesLength > 0)
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indicesBuffer);
}
unbind(shader) {
let gl = this.context.gl;
for (let i = 0; i < this.attributes.length; i++) {
let attrib = this.attributes[i];
let location = shader.getAttributeLocation(attrib.name);
gl.disableVertexAttribArray(location);
}
gl.bindBuffer(gl.ARRAY_BUFFER, null);
if (this.indicesLength > 0)
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, null);
}
update() {
let gl = this.context.gl;
if (this.dirtyVertices) {
if (!this.verticesBuffer) {
this.verticesBuffer = gl.createBuffer();
}
gl.bindBuffer(gl.ARRAY_BUFFER, this.verticesBuffer);
gl.bufferData(gl.ARRAY_BUFFER, this.vertices.subarray(0, this.verticesLength), gl.DYNAMIC_DRAW);
this.dirtyVertices = false;
}
if (this.dirtyIndices) {
if (!this.indicesBuffer) {
this.indicesBuffer = gl.createBuffer();
}
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, this.indicesBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, this.indices.subarray(0, this.indicesLength), gl.DYNAMIC_DRAW);
this.dirtyIndices = false;
}
}
restore() {
this.verticesBuffer = null;
this.indicesBuffer = null;
this.update();
}
dispose() {
this.context.removeRestorable(this);
let gl = this.context.gl;
gl.deleteBuffer(this.verticesBuffer);
gl.deleteBuffer(this.indicesBuffer);
}
};
var VertexAttribute = class {
constructor(name, type, numElements) {
this.name = name;
this.type = type;
this.numElements = numElements;
}
};
var Position2Attribute = class extends VertexAttribute {
constructor() {
super(Shader.POSITION, VertexAttributeType.Float, 2);
}
};
var Position3Attribute = class extends VertexAttribute {
constructor() {
super(Shader.POSITION, VertexAttributeType.Float, 3);
}
};
var TexCoordAttribute = class extends VertexAttribute {
constructor(unit = 0) {
super(Shader.TEXCOORDS + (unit == 0 ? "" : unit), VertexAttributeType.Float, 2);
}
};
var ColorAttribute = class extends VertexAttribute {
constructor() {
super(Shader.COLOR, VertexAttributeType.Float, 4);
}
};
var Color2Attribute = class extends VertexAttribute {
constructor() {
super(Shader.COLOR2, VertexAttributeType.Float, 4);
}
};
var VertexAttributeType = /* @__PURE__ */ ((VertexAttributeType2) => {
VertexAttributeType2[VertexAttributeType2["Float"] = 0] = "Float";
return VertexAttributeType2;
})(VertexAttributeType || {});
// spine-webgl/src/PolygonBatcher.ts
var GL_ONE = 1;
var GL_ONE_MINUS_SRC_COLOR = 769;
var GL_SRC_ALPHA = 770;
var GL_ONE_MINUS_SRC_ALPHA = 771;
var GL_DST_COLOR = 774;
var _PolygonBatcher = class {
context;
drawCalls = 0;
isDrawing = false;
mesh;
shader = null;
lastTexture = null;
verticesLength = 0;
indicesLength = 0;
srcColorBlend;
srcAlphaBlend;
dstBlend;
cullWasEnabled = false;
constructor(context, twoColorTint = true, maxVertices = 10920) {
if (maxVertices > 10920)
throw new Error("Can't have more than 10920 triangles per batch: " + maxVertices);
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
let attributes = twoColorTint ? [new Position2Attribute(), new ColorAttribute(), new TexCoordAttribute(), new Color2Attribute()] : [new Position2Attribute(), new ColorAttribute(), new TexCoordAttribute()];
this.mesh = new Mesh(context, attributes, maxVertices, maxVertices * 3);
let gl = this.context.gl;
this.srcColorBlend = gl.SRC_ALPHA;
this.srcAlphaBlend = gl.ONE;
this.dstBlend = gl.ONE_MINUS_SRC_ALPHA;
}
begin(shader) {
if (this.isDrawing)
throw new Error("PolygonBatch is already drawing. Call PolygonBatch.end() before calling PolygonBatch.begin()");
this.drawCalls = 0;
this.shader = shader;
this.lastTexture = null;
this.isDrawing = true;
let gl = this.context.gl;
gl.enable(gl.BLEND);
gl.blendFuncSeparate(this.srcColorBlend, this.dstBlend, this.srcAlphaBlend, this.dstBlend);
if (_PolygonBatcher.disableCulling) {
this.cullWasEnabled = gl.isEnabled(gl.CULL_FACE);
if (this.cullWasEnabled)
gl.disable(gl.CULL_FACE);
}
}
setBlendMode(blendMode, premultipliedAlpha) {
const blendModeGL = _PolygonBatcher.blendModesGL[blendMode];
const srcColorBlend = premultipliedAlpha ? blendModeGL.srcRgbPma : blendModeGL.srcRgb;
const srcAlphaBlend = blendModeGL.srcAlpha;
const dstBlend = blendModeGL.dstRgb;
if (this.srcColorBlend == srcColorBlend && this.srcAlphaBlend == srcAlphaBlend && this.dstBlend == dstBlend)
return;
this.srcColorBlend = srcColorBlend;
this.srcAlphaBlend = srcAlphaBlend;
this.dstBlend = dstBlend;
if (this.isDrawing) {
this.flush();
}
let gl = this.context.gl;
gl.blendFuncSeparate(srcColorBlend, dstBlend, srcAlphaBlend, dstBlend);
}
draw(texture, vertices, indices) {
if (texture != this.lastTexture) {
this.flush();
this.lastTexture = texture;
} else if (this.verticesLength + vertices.length > this.mesh.getVertices().length || this.indicesLength + indices.length > this.mesh.getIndices().length) {
this.flush();
}
let indexStart = this.mesh.numVertices();
this.mesh.getVertices().set(vertices, this.verticesLength);
this.verticesLength += vertices.length;
this.mesh.setVerticesLength(this.verticesLength);
let indicesArray = this.mesh.getIndices();
for (let i = this.indicesLength, j = 0; j < indices.length; i++, j++)
indicesArray[i] = indices[j] + indexStart;
this.indicesLength += indices.length;
this.mesh.setIndicesLength(this.indicesLength);
}
flush() {
if (this.verticesLength == 0)
return;
if (!this.lastTexture)
throw new Error("No texture set.");
if (!this.shader)
throw new Error("No shader set.");
this.lastTexture.bind();
this.mesh.draw(this.shader, this.context.gl.TRIANGLES);
this.verticesLength = 0;
this.indicesLength = 0;
this.mesh.setVerticesLength(0);
this.mesh.setIndicesLength(0);
this.drawCalls++;
_PolygonBatcher.globalDrawCalls++;
}
end() {
if (!this.isDrawing)
throw new Error("PolygonBatch is not drawing. Call PolygonBatch.begin() before calling PolygonBatch.end()");
if (this.verticesLength > 0 || this.indicesLength > 0)
this.flush();
this.shader = null;
this.lastTexture = null;
this.isDrawing = false;
let gl = this.context.gl;
gl.disable(gl.BLEND);
if (_PolygonBatcher.disableCulling) {
if (this.cullWasEnabled)
gl.enable(gl.CULL_FACE);
}
}
getDrawCalls() {
return this.drawCalls;
}
static getAndResetGlobalDrawCalls() {
let result = _PolygonBatcher.globalDrawCalls;
_PolygonBatcher.globalDrawCalls = 0;
return result;
}
dispose() {
this.mesh.dispose();
}
};
var PolygonBatcher = _PolygonBatcher;
__publicField(PolygonBatcher, "disableCulling", false);
__publicField(PolygonBatcher, "globalDrawCalls", 0);
__publicField(PolygonBatcher, "blendModesGL", [
{ srcRgb: GL_SRC_ALPHA, srcRgbPma: GL_ONE, dstRgb: GL_ONE_MINUS_SRC_ALPHA, srcAlpha: GL_ONE },
{ srcRgb: GL_SRC_ALPHA, srcRgbPma: GL_ONE, dstRgb: GL_ONE, srcAlpha: GL_ONE },
{ srcRgb: GL_DST_COLOR, srcRgbPma: GL_DST_COLOR, dstRgb: GL_ONE_MINUS_SRC_ALPHA, srcAlpha: GL_ONE },
{ srcRgb: GL_ONE, srcRgbPma: GL_ONE, dstRgb: GL_ONE_MINUS_SRC_COLOR, srcAlpha: GL_ONE }
]);
// spine-webgl/src/ShapeRenderer.ts
var ShapeRenderer = class {
context;
isDrawing = false;
mesh;
shapeType = ShapeType.Filled;
color = new Color(1, 1, 1, 1);
shader = null;
vertexIndex = 0;
tmp = new Vector2();
srcColorBlend;
srcAlphaBlend;
dstBlend;
constructor(context, maxVertices = 10920) {
if (maxVertices > 10920)
throw new Error("Can't have more than 10920 triangles per batch: " + maxVertices);
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
this.mesh = new Mesh(context, [new Position2Attribute(), new ColorAttribute()], maxVertices, 0);
let gl = this.context.gl;
this.srcColorBlend = gl.SRC_ALPHA;
this.srcAlphaBlend = gl.ONE;
this.dstBlend = gl.ONE_MINUS_SRC_ALPHA;
}
begin(shader) {
if (this.isDrawing)
throw new Error("ShapeRenderer.begin() has already been called");
this.shader = shader;
this.vertexIndex = 0;
this.isDrawing = true;
let gl = this.context.gl;
gl.enable(gl.BLEND);
gl.blendFuncSeparate(this.srcColorBlend, this.dstBlend, this.srcAlphaBlend, this.dstBlend);
}
setBlendMode(srcColorBlend, srcAlphaBlend, dstBlend) {
this.srcColorBlend = srcColorBlend;
this.srcAlphaBlend = srcAlphaBlend;
this.dstBlend = dstBlend;
if (this.isDrawing) {
this.flush();
let gl = this.context.gl;
gl.blendFuncSeparate(srcColorBlend, dstBlend, srcAlphaBlend, dstBlend);
}
}
setColor(color) {
this.color.setFromColor(color);
}
setColorWith(r, g, b, a) {
this.color.set(r, g, b, a);
}
point(x, y, color) {
this.check(ShapeType.Point, 1);
if (!color)
color = this.color;
this.vertex(x, y, color);
}
line(x, y, x2, y2, color) {
this.check(ShapeType.Line, 2);
let vertices = this.mesh.getVertices();
let idx = this.vertexIndex;
if (!color)
color = this.color;
this.vertex(x, y, color);
this.vertex(x2, y2, color);
}
triangle(filled, x, y, x2, y2, x3, y3, color, color2, color3) {
this.check(filled ? ShapeType.Filled : ShapeType.Line, 3);
let vertices = this.mesh.getVertices();
let idx = this.vertexIndex;
if (!color)
color = this.color;
if (!color2)
color2 = this.color;
if (!color3)
color3 = this.color;
if (filled) {
this.vertex(x, y, color);
this.vertex(x2, y2, color2);
this.vertex(x3, y3, color3);
} else {
this.vertex(x, y, color);
this.vertex(x2, y2, color2);
this.vertex(x2, y2, color);
this.vertex(x3, y3, color2);
this.vertex(x3, y3, color);
this.vertex(x, y, color2);
}
}
quad(filled, x, y, x2, y2, x3, y3, x4, y4, color, color2, color3, color4) {
this.check(filled ? ShapeType.Filled : ShapeType.Line, 3);
let vertices = this.mesh.getVertices();
let idx = this.vertexIndex;
if (!color)
color = this.color;
if (!color2)
color2 = this.color;
if (!color3)
color3 = this.color;
if (!color4)
color4 = this.color;
if (filled) {
this.vertex(x, y, color);
this.vertex(x2, y2, color2);
this.vertex(x3, y3, color3);
this.vertex(x3, y3, color3);
this.vertex(x4, y4, color4);
this.vertex(x, y, color);
} else {
this.vertex(x, y, color);
this.vertex(x2, y2, color2);
this.vertex(x2, y2, color2);
this.vertex(x3, y3, color3);
this.vertex(x3, y3, color3);
this.vertex(x4, y4, color4);
this.vertex(x4, y4, color4);
this.vertex(x, y, color);
}
}
rect(filled, x, y, width, height, color) {
this.quad(filled, x, y, x + width, y, x + width, y + height, x, y + height, color, color, color, color);
}
rectLine(filled, x1, y1, x2, y2, width, color) {
this.check(filled ? ShapeType.Filled : ShapeType.Line, 8);
if (!color)
color = this.color;
let t = this.tmp.set(y2 - y1, x1 - x2);
t.normalize();
width *= 0.5;
let tx = t.x * width;
let ty = t.y * width;
if (!filled) {
this.vertex(x1 + tx, y1 + ty, color);
this.vertex(x1 - tx, y1 - ty, color);
this.vertex(x2 + tx, y2 + ty, color);
this.vertex(x2 - tx, y2 - ty, color);
this.vertex(x2 + tx, y2 + ty, color);
this.vertex(x1 + tx, y1 + ty, color);
this.vertex(x2 - tx, y2 - ty, color);
this.vertex(x1 - tx, y1 - ty, color);
} else {
this.vertex(x1 + tx, y1 + ty, color);
this.vertex(x1 - tx, y1 - ty, color);
this.vertex(x2 + tx, y2 + ty, color);
this.vertex(x2 - tx, y2 - ty, color);
this.vertex(x2 + tx, y2 + ty, color);
this.vertex(x1 - tx, y1 - ty, color);
}
}
x(x, y, size) {
this.line(x - size, y - size, x + size, y + size);
this.line(x - size, y + size, x + size, y - size);
}
polygon(polygonVertices, offset, count, color) {
if (count < 3)
throw new Error("Polygon must contain at least 3 vertices");
this.check(ShapeType.Line, count * 2);
if (!color)
color = this.color;
let vertices = this.mesh.getVertices();
let idx = this.vertexIndex;
offset <<= 1;
count <<= 1;
let firstX = polygonVertices[offset];
let firstY = polygonVertices[offset + 1];
let last = offset + count;
for (let i = offset, n = offset + count - 2; i < n; i += 2) {
let x1 = polygonVertices[i];
let y1 = polygonVertices[i + 1];
let x2 = 0;
let y2 = 0;
if (i + 2 >= last) {
x2 = firstX;
y2 = firstY;
} else {
x2 = polygonVertices[i + 2];
y2 = polygonVertices[i + 3];
}
this.vertex(x1, y1, color);
this.vertex(x2, y2, color);
}
}
circle(filled, x, y, radius, color, segments = 0) {
if (segments == 0)
segments = Math.max(1, 6 * MathUtils.cbrt(radius) | 0);
if (segments <= 0)
throw new Error("segments must be > 0.");
if (!color)
color = this.color;
let angle = 2 * MathUtils.PI / segments;
let cos = Math.cos(angle);
let sin = Math.sin(angle);
let cx = radius, cy = 0;
if (!filled) {
this.check(ShapeType.Line, segments * 2 + 2);
for (let i = 0; i < segments; i++) {
this.vertex(x + cx, y + cy, color);
let temp2 = cx;
cx = cos * cx - sin * cy;
cy = sin * temp2 + cos * cy;
this.vertex(x + cx, y + cy, color);
}
this.vertex(x + cx, y + cy, color);
} else {
this.check(ShapeType.Filled, segments * 3 + 3);
segments--;
for (let i = 0; i < segments; i++) {
this.vertex(x, y, color);
this.vertex(x + cx, y + cy, color);
let temp2 = cx;
cx = cos * cx - sin * cy;
cy = sin * temp2 + cos * cy;
this.vertex(x + cx, y + cy, color);
}
this.vertex(x, y, color);
this.vertex(x + cx, y + cy, color);
}
let temp = cx;
cx = radius;
cy = 0;
this.vertex(x + cx, y + cy, color);
}
curve(x1, y1, cx1, cy1, cx2, cy2, x2, y2, segments, color) {
this.check(ShapeType.Line, segments * 2 + 2);
if (!color)
color = this.color;
let subdiv_step = 1 / segments;
let subdiv_step2 = subdiv_step * subdiv_step;
let subdiv_step3 = subdiv_step * subdiv_step * subdiv_step;
let pre1 = 3 * subdiv_step;
let pre2 = 3 * subdiv_step2;
let pre4 = 6 * subdiv_step2;
let pre5 = 6 * subdiv_step3;
let tmp1x = x1 - cx1 * 2 + cx2;
let tmp1y = y1 - cy1 * 2 + cy2;
let tmp2x = (cx1 - cx2) * 3 - x1 + x2;
let tmp2y = (cy1 - cy2) * 3 - y1 + y2;
let fx = x1;
let fy = y1;
let dfx = (cx1 - x1) * pre1 + tmp1x * pre2 + tmp2x * subdiv_step3;
let dfy = (cy1 - y1) * pre1 + tmp1y * pre2 + tmp2y * subdiv_step3;
let ddfx = tmp1x * pre4 + tmp2x * pre5;
let ddfy = tmp1y * pre4 + tmp2y * pre5;
let dddfx = tmp2x * pre5;
let dddfy = tmp2y * pre5;
while (segments-- > 0) {
this.vertex(fx, fy, color);
fx += dfx;
fy += dfy;
dfx += ddfx;
dfy += ddfy;
ddfx += dddfx;
ddfy += dddfy;
this.vertex(fx, fy, color);
}
this.vertex(fx, fy, color);
this.vertex(x2, y2, color);
}
vertex(x, y, color) {
let idx = this.vertexIndex;
let vertices = this.mesh.getVertices();
vertices[idx++] = x;
vertices[idx++] = y;
vertices[idx++] = color.r;
vertices[idx++] = color.g;
vertices[idx++] = color.b;
vertices[idx++] = color.a;
this.vertexIndex = idx;
}
end() {
if (!this.isDrawing)
throw new Error("ShapeRenderer.begin() has not been called");
this.flush();
let gl = this.context.gl;
gl.disable(gl.BLEND);
this.isDrawing = false;
}
flush() {
if (this.vertexIndex == 0)
return;
if (!this.shader)
throw new Error("No shader set.");
this.mesh.setVerticesLength(this.vertexIndex);
this.mesh.draw(this.shader, this.shapeType);
this.vertexIndex = 0;
}
check(shapeType, numVertices) {
if (!this.isDrawing)
throw new Error("ShapeRenderer.begin() has not been called");
if (this.shapeType == shapeType) {
if (this.mesh.maxVertices() - this.mesh.numVertices() < numVertices)
this.flush();
else
return;
} else {
this.flush();
this.shapeType = shapeType;
}
}
dispose() {
this.mesh.dispose();
}
};
var ShapeType = /* @__PURE__ */ ((ShapeType2) => {
ShapeType2[ShapeType2["Point"] = 0] = "Point";
ShapeType2[ShapeType2["Line"] = 1] = "Line";
ShapeType2[ShapeType2["Filled"] = 4] = "Filled";
return ShapeType2;
})(ShapeType || {});
// spine-webgl/src/SkeletonDebugRenderer.ts
var _SkeletonDebugRenderer = class {
boneLineColor = new Color(1, 0, 0, 1);
boneOriginColor = new Color(0, 1, 0, 1);
attachmentLineColor = new Color(0, 0, 1, 0.5);
triangleLineColor = new Color(1, 0.64, 0, 0.5);
pathColor = new Color().setFromString("FF7F00");
clipColor = new Color(0.8, 0, 0, 2);
aabbColor = new Color(0, 1, 0, 0.5);
drawBones = true;
drawRegionAttachments = true;
drawBoundingBoxes = true;
drawMeshHull = true;
drawMeshTriangles = true;
drawPaths = true;
drawSkeletonXY = false;
drawClipping = true;
premultipliedAlpha = false;
scale = 1;
boneWidth = 2;
context;
bounds = new SkeletonBounds();
temp = new Array();
vertices = Utils.newFloatArray(2 * 1024);
constructor(context) {
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
}
draw(shapes, skeleton, ignoredBones) {
let skeletonX = skeleton.x;
let skeletonY = skeleton.y;
let gl = this.context.gl;
let srcFunc = this.premultipliedAlpha ? gl.ONE : gl.SRC_ALPHA;
shapes.setBlendMode(srcFunc, gl.ONE, gl.ONE_MINUS_SRC_ALPHA);
let bones = skeleton.bones;
if (this.drawBones) {
shapes.setColor(this.boneLineColor);
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (ignoredBones && ignoredBones.indexOf(bone.data.name) > -1)
continue;
if (!bone.parent)
continue;
let x = bone.data.length * bone.a + bone.worldX;
let y = bone.data.length * bone.c + bone.worldY;
shapes.rectLine(true, bone.worldX, bone.worldY, x, y, this.boneWidth * this.scale);
}
if (this.drawSkeletonXY)
shapes.x(skeletonX, skeletonY, 4 * this.scale);
}
if (this.drawRegionAttachments) {
shapes.setColor(this.attachmentLineColor);
let slots = skeleton.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
let attachment = slot.getAttachment();
if (attachment instanceof RegionAttachment) {
let regionAttachment = attachment;
let vertices = this.vertices;
regionAttachment.computeWorldVertices(slot, vertices, 0, 2);
shapes.line(vertices[0], vertices[1], vertices[2], vertices[3]);
shapes.line(vertices[2], vertices[3], vertices[4], vertices[5]);
shapes.line(vertices[4], vertices[5], vertices[6], vertices[7]);
shapes.line(vertices[6], vertices[7], vertices[0], vertices[1]);
}
}
}
if (this.drawMeshHull || this.drawMeshTriangles) {
let slots = skeleton.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (!slot.bone.active)
continue;
let attachment = slot.getAttachment();
if (!(attachment instanceof MeshAttachment))
continue;
let mesh = attachment;
let vertices = this.vertices;
mesh.computeWorldVertices(slot, 0, mesh.worldVerticesLength, vertices, 0, 2);
let triangles = mesh.triangles;
let hullLength = mesh.hullLength;
if (this.drawMeshTriangles) {
shapes.setColor(this.triangleLineColor);
for (let ii = 0, nn = triangles.length; ii < nn; ii += 3) {
let v1 = triangles[ii] * 2, v2 = triangles[ii + 1] * 2, v3 = triangles[ii + 2] * 2;
shapes.triangle(
false,
vertices[v1],
vertices[v1 + 1],
//
vertices[v2],
vertices[v2 + 1],
//
vertices[v3],
vertices[v3 + 1]
//
);
}
}
if (this.drawMeshHull && hullLength > 0) {
shapes.setColor(this.attachmentLineColor);
hullLength = (hullLength >> 1) * 2;
let lastX = vertices[hullLength - 2], lastY = vertices[hullLength - 1];
for (let ii = 0, nn = hullLength; ii < nn; ii += 2) {
let x = vertices[ii], y = vertices[ii + 1];
shapes.line(x, y, lastX, lastY);
lastX = x;
lastY = y;
}
}
}
}
if (this.drawBoundingBoxes) {
let bounds = this.bounds;
bounds.update(skeleton, true);
shapes.setColor(this.aabbColor);
shapes.rect(false, bounds.minX, bounds.minY, bounds.getWidth(), bounds.getHeight());
let polygons = bounds.polygons;
let boxes = bounds.boundingBoxes;
for (let i = 0, n = polygons.length; i < n; i++) {
let polygon = polygons[i];
shapes.setColor(boxes[i].color);
shapes.polygon(polygon, 0, polygon.length);
}
}
if (this.drawPaths) {
let slots = skeleton.slots;
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (!slot.bone.active)
continue;
let attachment = slot.getAttachment();
if (!(attachment instanceof PathAttachment))
continue;
let path = attachment;
let nn = path.worldVerticesLength;
let world = this.temp = Utils.setArraySize(this.temp, nn, 0);
path.computeWorldVertices(slot, 0, nn, world, 0, 2);
let color = this.pathColor;
let x1 = world[2], y1 = world[3], x2 = 0, y2 = 0;
if (path.closed) {
shapes.setColor(color);
let cx1 = world[0], cy1 = world[1], cx2 = world[nn - 2], cy2 = world[nn - 1];
x2 = world[nn - 4];
y2 = world[nn - 3];
shapes.curve(x1, y1, cx1, cy1, cx2, cy2, x2, y2, 32);
shapes.setColor(_SkeletonDebugRenderer.LIGHT_GRAY);
shapes.line(x1, y1, cx1, cy1);
shapes.line(x2, y2, cx2, cy2);
}
nn -= 4;
for (let ii = 4; ii < nn; ii += 6) {
let cx1 = world[ii], cy1 = world[ii + 1], cx2 = world[ii + 2], cy2 = world[ii + 3];
x2 = world[ii + 4];
y2 = world[ii + 5];
shapes.setColor(color);
shapes.curve(x1, y1, cx1, cy1, cx2, cy2, x2, y2, 32);
shapes.setColor(_SkeletonDebugRenderer.LIGHT_GRAY);
shapes.line(x1, y1, cx1, cy1);
shapes.line(x2, y2, cx2, cy2);
x1 = x2;
y1 = y2;
}
}
}
if (this.drawBones) {
shapes.setColor(this.boneOriginColor);
for (let i = 0, n = bones.length; i < n; i++) {
let bone = bones[i];
if (ignoredBones && ignoredBones.indexOf(bone.data.name) > -1)
continue;
shapes.circle(true, bone.worldX, bone.worldY, 3 * this.scale, this.boneOriginColor, 8);
}
}
if (this.drawClipping) {
let slots = skeleton.slots;
shapes.setColor(this.clipColor);
for (let i = 0, n = slots.length; i < n; i++) {
let slot = slots[i];
if (!slot.bone.active)
continue;
let attachment = slot.getAttachment();
if (!(attachment instanceof ClippingAttachment))
continue;
let clip = attachment;
let nn = clip.worldVerticesLength;
let world = this.temp = Utils.setArraySize(this.temp, nn, 0);
clip.computeWorldVertices(slot, 0, nn, world, 0, 2);
for (let i2 = 0, n2 = world.length; i2 < n2; i2 += 2) {
let x = world[i2];
let y = world[i2 + 1];
let x2 = world[(i2 + 2) % world.length];
let y2 = world[(i2 + 3) % world.length];
shapes.line(x, y, x2, y2);
}
}
}
}
dispose() {
}
};
var SkeletonDebugRenderer = _SkeletonDebugRenderer;
__publicField(SkeletonDebugRenderer, "LIGHT_GRAY", new Color(192 / 255, 192 / 255, 192 / 255, 1));
__publicField(SkeletonDebugRenderer, "GREEN", new Color(0, 1, 0, 1));
// spine-webgl/src/SkeletonRenderer.ts
var Renderable = class {
constructor(vertices, numVertices, numFloats) {
this.vertices = vertices;
this.numVertices = numVertices;
this.numFloats = numFloats;
}
};
var _SkeletonRenderer = class {
premultipliedAlpha = false;
tempColor = new Color();
tempColor2 = new Color();
vertices;
vertexSize = 2 + 2 + 4;
twoColorTint = false;
renderable = new Renderable([], 0, 0);
clipper = new SkeletonClipping();
temp = new Vector2();
temp2 = new Vector2();
temp3 = new Color();
temp4 = new Color();
constructor(context, twoColorTint = true) {
this.twoColorTint = twoColorTint;
if (twoColorTint)
this.vertexSize += 4;
this.vertices = Utils.newFloatArray(this.vertexSize * 1024);
}
draw(batcher, skeleton, slotRangeStart = -1, slotRangeEnd = -1, transformer = null) {
let clipper = this.clipper;
let premultipliedAlpha = this.premultipliedAlpha;
let twoColorTint = this.twoColorTint;
let blendMode = null;
let renderable = this.renderable;
let uvs;
let triangles;
let drawOrder = skeleton.drawOrder;
let attachmentColor;
let skeletonColor = skeleton.color;
let vertexSize = twoColorTint ? 12 : 8;
let inRange = false;
if (slotRangeStart == -1)
inRange = true;
for (let i = 0, n = drawOrder.length; i < n; i++) {
let clippedVertexSize = clipper.isClipping() ? 2 : vertexSize;
let slot = drawOrder[i];
if (!slot.bone.active) {
clipper.clipEndWithSlot(slot);
continue;
}
if (slotRangeStart >= 0 && slotRangeStart == slot.data.index) {
inRange = true;
}
if (!inRange) {
clipper.clipEndWithSlot(slot);
continue;
}
if (slotRangeEnd >= 0 && slotRangeEnd == slot.data.index) {
inRange = false;
}
let attachment = slot.getAttachment();
let texture;
if (attachment instanceof RegionAttachment) {
let region = attachment;
renderable.vertices = this.vertices;
renderable.numVertices = 4;
renderable.numFloats = clippedVertexSize << 2;
region.computeWorldVertices(slot, renderable.vertices, 0, clippedVertexSize);
triangles = _SkeletonRenderer.QUAD_TRIANGLES;
uvs = region.uvs;
texture = region.region.texture;
attachmentColor = region.color;
} else if (attachment instanceof MeshAttachment) {
let mesh = attachment;
renderable.vertices = this.vertices;
renderable.numVertices = mesh.worldVerticesLength >> 1;
renderable.numFloats = renderable.numVertices * clippedVertexSize;
if (renderable.numFloats > renderable.vertices.length) {
renderable.vertices = this.vertices = Utils.newFloatArray(renderable.numFloats);
}
mesh.computeWorldVertices(slot, 0, mesh.worldVerticesLength, renderable.vertices, 0, clippedVertexSize);
triangles = mesh.triangles;
texture = mesh.region.texture;
uvs = mesh.uvs;
attachmentColor = mesh.color;
} else if (attachment instanceof ClippingAttachment) {
let clip = attachment;
clipper.clipStart(slot, clip);
continue;
} else {
clipper.clipEndWithSlot(slot);
continue;
}
if (texture) {
let slotColor = slot.color;
let finalColor = this.tempColor;
finalColor.r = skeletonColor.r * slotColor.r * attachmentColor.r;
finalColor.g = skeletonColor.g * slotColor.g * attachmentColor.g;
finalColor.b = skeletonColor.b * slotColor.b * attachmentColor.b;
finalColor.a = skeletonColor.a * slotColor.a * attachmentColor.a;
if (premultipliedAlpha) {
finalColor.r *= finalColor.a;
finalColor.g *= finalColor.a;
finalColor.b *= finalColor.a;
}
let darkColor = this.tempColor2;
if (!slot.darkColor)
darkColor.set(0, 0, 0, 1);
else {
if (premultipliedAlpha) {
darkColor.r = slot.darkColor.r * finalColor.a;
darkColor.g = slot.darkColor.g * finalColor.a;
darkColor.b = slot.darkColor.b * finalColor.a;
} else {
darkColor.setFromColor(slot.darkColor);
}
darkColor.a = premultipliedAlpha ? 1 : 0;
}
let slotBlendMode = slot.data.blendMode;
if (slotBlendMode != blendMode) {
blendMode = slotBlendMode;
batcher.setBlendMode(blendMode, premultipliedAlpha);
}
if (clipper.isClipping()) {
clipper.clipTriangles(renderable.vertices, triangles, triangles.length, uvs, finalColor, darkColor, twoColorTint);
let clippedVertices = new Float32Array(clipper.clippedVertices);
let clippedTriangles = clipper.clippedTriangles;
if (transformer)
transformer(clippedVertices, clippedVertices.length, vertexSize);
batcher.draw(texture, clippedVertices, clippedTriangles);
} else {
let verts = renderable.vertices;
if (!twoColorTint) {
for (let v = 2, u = 0, n2 = renderable.numFloats; v < n2; v += vertexSize, u += 2) {
verts[v] = finalColor.r;
verts[v + 1] = finalColor.g;
verts[v + 2] = finalColor.b;
verts[v + 3] = finalColor.a;
verts[v + 4] = uvs[u];
verts[v + 5] = uvs[u + 1];
}
} else {
for (let v = 2, u = 0, n2 = renderable.numFloats; v < n2; v += vertexSize, u += 2) {
verts[v] = finalColor.r;
verts[v + 1] = finalColor.g;
verts[v + 2] = finalColor.b;
verts[v + 3] = finalColor.a;
verts[v + 4] = uvs[u];
verts[v + 5] = uvs[u + 1];
verts[v + 6] = darkColor.r;
verts[v + 7] = darkColor.g;
verts[v + 8] = darkColor.b;
verts[v + 9] = darkColor.a;
}
}
let view = renderable.vertices.subarray(0, renderable.numFloats);
if (transformer)
transformer(renderable.vertices, renderable.numFloats, vertexSize);
batcher.draw(texture, view, triangles);
}
}
clipper.clipEndWithSlot(slot);
}
clipper.clipEnd();
}
/** Returns the {@link SkeletonClipping} used by this renderer for use with e.g. {@link Skeleton.getBounds} **/
getSkeletonClipping() {
return this.clipper;
}
};
var SkeletonRenderer = _SkeletonRenderer;
__publicField(SkeletonRenderer, "QUAD_TRIANGLES", [0, 1, 2, 2, 3, 0]);
// spine-webgl/src/SceneRenderer.ts
var quad = [
0,
0,
1,
1,
1,
1,
0,
0,
0,
0,
1,
1,
1,
1,
0,
0,
0,
0,
1,
1,
1,
1,
0,
0,
0,
0,
1,
1,
1,
1,
0,
0
];
var QUAD_TRIANGLES = [0, 1, 2, 2, 3, 0];
var WHITE = new Color(1, 1, 1, 1);
var SceneRenderer = class {
context;
canvas;
camera;
batcher;
twoColorTint = false;
batcherShader;
shapes;
shapesShader;
activeRenderer = null;
skeletonRenderer;
skeletonDebugRenderer;
constructor(canvas, context, twoColorTint = true) {
this.canvas = canvas;
this.context = context instanceof ManagedWebGLRenderingContext ? context : new ManagedWebGLRenderingContext(context);
this.twoColorTint = twoColorTint;
this.camera = new OrthoCamera(canvas.width, canvas.height);
this.batcherShader = twoColorTint ? Shader.newTwoColoredTextured(this.context) : Shader.newColoredTextured(this.context);
this.batcher = new PolygonBatcher(this.context, twoColorTint);
this.shapesShader = Shader.newColored(this.context);
this.shapes = new ShapeRenderer(this.context);
this.skeletonRenderer = new SkeletonRenderer(this.context, twoColorTint);
this.skeletonDebugRenderer = new SkeletonDebugRenderer(this.context);
}
dispose() {
this.batcher.dispose();
this.batcherShader.dispose();
this.shapes.dispose();
this.shapesShader.dispose();
this.skeletonDebugRenderer.dispose();
}
begin() {
this.camera.update();
this.enableRenderer(this.batcher);
}
drawSkeleton(skeleton, premultipliedAlpha = false, slotRangeStart = -1, slotRangeEnd = -1, transform = null) {
this.enableRenderer(this.batcher);
this.skeletonRenderer.premultipliedAlpha = premultipliedAlpha;
this.skeletonRenderer.draw(this.batcher, skeleton, slotRangeStart, slotRangeEnd, transform);
}
drawSkeletonDebug(skeleton, premultipliedAlpha = false, ignoredBones) {
this.enableRenderer(this.shapes);
this.skeletonDebugRenderer.premultipliedAlpha = premultipliedAlpha;
this.skeletonDebugRenderer.draw(this.shapes, skeleton, ignoredBones);
}
drawTexture(texture, x, y, width, height, color) {
this.enableRenderer(this.batcher);
if (!color)
color = WHITE;
var i = 0;
quad[i++] = x;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 0;
quad[i++] = 1;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 1;
quad[i++] = 1;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 1;
quad[i++] = 0;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 0;
quad[i++] = 0;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i] = 0;
}
this.batcher.draw(texture, quad, QUAD_TRIANGLES);
}
drawTextureUV(texture, x, y, width, height, u, v, u2, v2, color) {
this.enableRenderer(this.batcher);
if (!color)
color = WHITE;
var i = 0;
quad[i++] = x;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = u;
quad[i++] = v;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = u2;
quad[i++] = v;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = u2;
quad[i++] = v2;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = u;
quad[i++] = v2;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i] = 0;
}
this.batcher.draw(texture, quad, QUAD_TRIANGLES);
}
drawTextureRotated(texture, x, y, width, height, pivotX, pivotY, angle, color) {
this.enableRenderer(this.batcher);
if (!color)
color = WHITE;
let worldOriginX = x + pivotX;
let worldOriginY = y + pivotY;
let fx = -pivotX;
let fy = -pivotY;
let fx2 = width - pivotX;
let fy2 = height - pivotY;
let p1x = fx;
let p1y = fy;
let p2x = fx;
let p2y = fy2;
let p3x = fx2;
let p3y = fy2;
let p4x = fx2;
let p4y = fy;
let x1 = 0;
let y1 = 0;
let x2 = 0;
let y2 = 0;
let x3 = 0;
let y3 = 0;
let x4 = 0;
let y4 = 0;
if (angle != 0) {
let cos = MathUtils.cosDeg(angle);
let sin = MathUtils.sinDeg(angle);
x1 = cos * p1x - sin * p1y;
y1 = sin * p1x + cos * p1y;
x4 = cos * p2x - sin * p2y;
y4 = sin * p2x + cos * p2y;
x3 = cos * p3x - sin * p3y;
y3 = sin * p3x + cos * p3y;
x2 = x3 + (x1 - x4);
y2 = y3 + (y1 - y4);
} else {
x1 = p1x;
y1 = p1y;
x4 = p2x;
y4 = p2y;
x3 = p3x;
y3 = p3y;
x2 = p4x;
y2 = p4y;
}
x1 += worldOriginX;
y1 += worldOriginY;
x2 += worldOriginX;
y2 += worldOriginY;
x3 += worldOriginX;
y3 += worldOriginY;
x4 += worldOriginX;
y4 += worldOriginY;
var i = 0;
quad[i++] = x1;
quad[i++] = y1;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 0;
quad[i++] = 1;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x2;
quad[i++] = y2;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 1;
quad[i++] = 1;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x3;
quad[i++] = y3;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 1;
quad[i++] = 0;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x4;
quad[i++] = y4;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = 0;
quad[i++] = 0;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i] = 0;
}
this.batcher.draw(texture, quad, QUAD_TRIANGLES);
}
drawRegion(region, x, y, width, height, color) {
this.enableRenderer(this.batcher);
if (!color)
color = WHITE;
var i = 0;
quad[i++] = x;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = region.u;
quad[i++] = region.v2;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = region.u2;
quad[i++] = region.v2;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x + width;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = region.u2;
quad[i++] = region.v;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
}
quad[i++] = x;
quad[i++] = y + height;
quad[i++] = color.r;
quad[i++] = color.g;
quad[i++] = color.b;
quad[i++] = color.a;
quad[i++] = region.u;
quad[i++] = region.v;
if (this.twoColorTint) {
quad[i++] = 0;
quad[i++] = 0;
quad[i++] = 0;
quad[i] = 0;
}
this.batcher.draw(region.page.texture, quad, QUAD_TRIANGLES);
}
line(x, y, x2, y2, color, color2) {
this.enableRenderer(this.shapes);
this.shapes.line(x, y, x2, y2, color);
}
triangle(filled, x, y, x2, y2, x3, y3, color, color2, color3) {
this.enableRenderer(this.shapes);
this.shapes.triangle(filled, x, y, x2, y2, x3, y3, color, color2, color3);
}
quad(filled, x, y, x2, y2, x3, y3, x4, y4, color, color2, color3, color4) {
this.enableRenderer(this.shapes);
this.shapes.quad(filled, x, y, x2, y2, x3, y3, x4, y4, color, color2, color3, color4);
}
rect(filled, x, y, width, height, color) {
this.enableRenderer(this.shapes);
this.shapes.rect(filled, x, y, width, height, color);
}
rectLine(filled, x1, y1, x2, y2, width, color) {
this.enableRenderer(this.shapes);
this.shapes.rectLine(filled, x1, y1, x2, y2, width, color);
}
polygon(polygonVertices, offset, count, color) {
this.enableRenderer(this.shapes);
this.shapes.polygon(polygonVertices, offset, count, color);
}
circle(filled, x, y, radius, color, segments = 0) {
this.enableRenderer(this.shapes);
this.shapes.circle(filled, x, y, radius, color, segments);
}
curve(x1, y1, cx1, cy1, cx2, cy2, x2, y2, segments, color) {
this.enableRenderer(this.shapes);
this.shapes.curve(x1, y1, cx1, cy1, cx2, cy2, x2, y2, segments, color);
}
end() {
if (this.activeRenderer === this.batcher)
this.batcher.end();
else if (this.activeRenderer === this.shapes)
this.shapes.end();
this.activeRenderer = null;
}
resize(resizeMode) {
let canvas = this.canvas;
var dpr = window.devicePixelRatio || 1;
var w = Math.round(canvas.clientWidth * dpr);
var h = Math.round(canvas.clientHeight * dpr);
if (canvas.width != w || canvas.height != h) {
canvas.width = w;
canvas.height = h;
}
this.context.gl.viewport(0, 0, canvas.width, canvas.height);
if (resizeMode === ResizeMode.Expand)
this.camera.setViewport(w, h);
else if (resizeMode === ResizeMode.Fit) {
let sourceWidth = canvas.width, sourceHeight = canvas.height;
let targetWidth = this.camera.viewportWidth, targetHeight = this.camera.viewportHeight;
let targetRatio = targetHeight / targetWidth;
let sourceRatio = sourceHeight / sourceWidth;
let scale = targetRatio < sourceRatio ? targetWidth / sourceWidth : targetHeight / sourceHeight;
this.camera.setViewport(sourceWidth * scale, sourceHeight * scale);
}
this.camera.update();
}
enableRenderer(renderer) {
if (this.activeRenderer === renderer)
return;
this.end();
if (renderer instanceof PolygonBatcher) {
this.batcherShader.bind();
this.batcherShader.setUniform4x4f(Shader.MVP_MATRIX, this.camera.projectionView.values);
this.batcherShader.setUniformi("u_texture", 0);
this.batcher.begin(this.batcherShader);
this.activeRenderer = this.batcher;
} else if (renderer instanceof ShapeRenderer) {
this.shapesShader.bind();
this.shapesShader.setUniform4x4f(Shader.MVP_MATRIX, this.camera.projectionView.values);
this.shapes.begin(this.shapesShader);
this.activeRenderer = this.shapes;
} else
this.activeRenderer = this.skeletonDebugRenderer;
}
};
var ResizeMode = /* @__PURE__ */ ((ResizeMode2) => {
ResizeMode2[ResizeMode2["Stretch"] = 0] = "Stretch";
ResizeMode2[ResizeMode2["Expand"] = 1] = "Expand";
ResizeMode2[ResizeMode2["Fit"] = 2] = "Fit";
return ResizeMode2;
})(ResizeMode || {});
// spine-webgl/src/LoadingScreen.ts
var spinnerImage;
var logoImage;
var loaded = 0;
var FADE_IN = 1;
var FADE_OUT = 1;
var logoWidth = 165;
var logoHeight = 108;
var spinnerSize = 163;
var LoadingScreen = class {
renderer;
logo = null;
spinner = null;
angle = 0;
fadeOut = 0;
fadeIn = 0;
timeKeeper = new TimeKeeper();
backgroundColor = new Color(0.135, 0.135, 0.135, 1);
tempColor = new Color();
constructor(renderer) {
this.renderer = renderer;
this.timeKeeper.maxDelta = 9;
if (!logoImage) {
let isSafari = navigator.userAgent.indexOf("Safari") > -1;
let onload = () => loaded++;
logoImage = new Image();
logoImage.src = SPINE_LOGO_DATA;
if (!isSafari)
logoImage.crossOrigin = "anonymous";
logoImage.onload = onload;
spinnerImage = new Image();
spinnerImage.src = SPINNER_DATA;
if (!isSafari)
spinnerImage.crossOrigin = "anonymous";
spinnerImage.onload = onload;
}
}
dispose() {
this.logo?.dispose();
this.spinner?.dispose();
}
draw(complete = false) {
if (loaded < 2 || complete && this.fadeOut > FADE_OUT)
return;
this.timeKeeper.update();
let a = Math.abs(Math.sin(this.timeKeeper.totalTime + 0.25));
this.angle -= this.timeKeeper.delta * 200 * (1 + 1.5 * Math.pow(a, 5));
let tempColor = this.tempColor;
let renderer = this.renderer;
let canvas = renderer.canvas;
let gl = renderer.context.gl;
renderer.resize(1 /* Expand */);
renderer.camera.position.set(canvas.width / 2, canvas.height / 2, 0);
renderer.batcher.setBlendMode(0 /* Normal */, true);
if (complete) {
this.fadeOut += this.timeKeeper.delta * (this.timeKeeper.totalTime < 1 ? 2 : 1);
if (this.fadeOut > FADE_OUT)
return;
tempColor.setFromColor(this.backgroundColor);
a = 1 - this.fadeOut / FADE_OUT;
a = 1 - (a - 1) * (a - 1);
tempColor.a *= a;
if (tempColor.a > 0) {
renderer.camera.zoom = 1;
renderer.begin();
renderer.quad(
true,
0,
0,
canvas.width,
0,
canvas.width,
canvas.height,
0,
canvas.height,
tempColor,
tempColor,
tempColor,
tempColor
);
renderer.end();
}
} else {
this.fadeIn += this.timeKeeper.delta;
if (this.backgroundColor.a > 0) {
gl.clearColor(this.backgroundColor.r, this.backgroundColor.g, this.backgroundColor.b, this.backgroundColor.a);
gl.clear(gl.COLOR_BUFFER_BIT);
}
a = 1;
}
a *= Math.min(this.fadeIn / FADE_IN, 1);
tempColor.set(a, a, a, a);
if (!this.logo) {
this.logo = new GLTexture(renderer.context, logoImage);
this.spinner = new GLTexture(renderer.context, spinnerImage);
}
renderer.camera.zoom = Math.max(1, spinnerSize / canvas.height);
renderer.begin();
renderer.drawTexture(this.logo, (canvas.width - logoWidth) / 2, (canvas.height - logoHeight) / 2, logoWidth, logoHeight, tempColor);
if (this.spinner)
renderer.drawTextureRotated(this.spinner, (canvas.width - spinnerSize) / 2, (canvas.height - spinnerSize) / 2, spinnerSize, spinnerSize, spinnerSize / 2, spinnerSize / 2, this.angle, tempColor);
renderer.end();
}
};
var SPINNER_DATA = "";
var SPINE_LOGO_DATA = "";
// spine-webgl/src/SpineCanvas.ts
var SpineCanvas = class {
/** Constructs a new spine canvas, rendering to the provided HTML canvas. */
constructor(canvas, config) {
this.config = config;
if (!config.pathPrefix)
config.pathPrefix = "";
if (!config.app)
config.app = {
loadAssets: () => {
},
initialize: () => {
},
update: () => {
},
render: () => {
},
error: () => {
},
dispose: () => {
}
};
if (!config.webglConfig)
config.webglConfig = { alpha: true };
this.htmlCanvas = canvas;
this.context = new ManagedWebGLRenderingContext(canvas, config.webglConfig);
this.renderer = new SceneRenderer(canvas, this.context);
this.gl = this.context.gl;
this.assetManager = new AssetManager(this.context, config.pathPrefix);
this.input = new Input(canvas);
if (config.app.loadAssets)
config.app.loadAssets(this);
let loop = () => {
if (this.disposed)
return;
requestAnimationFrame(loop);
this.time.update();
if (config.app.update)
config.app.update(this, this.time.delta);
if (config.app.render)
config.app.render(this);
};
let waitForAssets = () => {
if (this.disposed)
return;
if (this.assetManager.isLoadingComplete()) {
if (this.assetManager.hasErrors()) {
if (config.app.error)
config.app.error(this, this.assetManager.getErrors());
} else {
if (config.app.initialize)
config.app.initialize(this);
loop();
}
return;
}
requestAnimationFrame(waitForAssets);
};
requestAnimationFrame(waitForAssets);
}
context;
/** Tracks the current time, delta, and other time related statistics. */
time = new TimeKeeper();
/** The HTML canvas to render to. */
htmlCanvas;
/** The WebGL rendering context. */
gl;
/** The scene renderer for easy drawing of skeletons, shapes, and images. */
renderer;
/** The asset manager to load assets with. */
assetManager;
/** The input processor used to listen to mouse, touch, and keyboard events. */
input;
disposed = false;
/** Clears the canvas with the given color. The color values are given in the range [0,1]. */
clear(r, g, b, a) {
this.gl.clearColor(r, g, b, a);
this.gl.clear(this.gl.COLOR_BUFFER_BIT);
}
/** Disposes the app, so the update() and render() functions are no longer called. Calls the dispose() callback.*/
dispose() {
if (this.config.app.dispose)
this.config.app.dispose(this);
this.disposed = true;
}
};
// spine-phaser-v3/src/mixins.ts
var components = Phaser.GameObjects.Components;
var ComputedSize = components.ComputedSize;
var Depth = components.Depth;
var Flip = components.Flip;
var ScrollFactor = components.ScrollFactor;
var Transform = components.Transform;
var Visible = components.Visible;
var Origin = components.Origin;
var Alpha = components.Alpha;
function createMixin(...component) {
return (BaseGameObject) => {
Phaser.Class.mixin(BaseGameObject, component);
return BaseGameObject;
};
}
var ComputedSizeMixin = createMixin(ComputedSize);
var DepthMixin = createMixin(Depth);
var FlipMixin = createMixin(Flip);
var ScrollFactorMixin = createMixin(ScrollFactor);
var TransformMixin = createMixin(Transform);
var VisibleMixin = createMixin(Visible);
var OriginMixin = createMixin(Origin);
var AlphaMixin = createMixin(Alpha);
// spine-phaser-v3/src/SpineGameObject.ts
var BaseSpineGameObject = class extends Phaser.GameObjects.GameObject {
constructor(scene, type) {
super(scene, type);
}
};
var SetupPoseBoundsProvider = class {
/**
* @param clipping If true, clipping attachments are used to compute the bounds. False, by default.
*/
constructor(clipping = false) {
this.clipping = clipping;
}
calculateBounds(gameObject) {
if (!gameObject.skeleton)
return { x: 0, y: 0, width: 0, height: 0 };
const skeleton = new Skeleton(gameObject.skeleton.data);
skeleton.setToSetupPose();
skeleton.updateWorldTransform(2 /* update */);
const bounds = skeleton.getBoundsRect(this.clipping ? new SkeletonClipping() : void 0);
return bounds.width == Number.NEGATIVE_INFINITY ? { x: 0, y: 0, width: 0, height: 0 } : bounds;
}
};
var SkinsAndAnimationBoundsProvider = class {
/**
* @param animation The animation to use for calculating the bounds. If null, the setup pose is used.
* @param skins The skins to use for calculating the bounds. If empty, the default skin is used.
* @param timeStep The time step to use for calculating the bounds. A smaller time step means more precision, but slower calculation.
* @param clipping If true, clipping attachments are used to compute the bounds. False, by default.
*/
constructor(animation, skins = [], timeStep = 0.05, clipping = false) {
this.animation = animation;
this.skins = skins;
this.timeStep = timeStep;
this.clipping = clipping;
}
calculateBounds(gameObject) {
if (!gameObject.skeleton || !gameObject.animationState)
return { x: 0, y: 0, width: 0, height: 0 };
const animationState = new AnimationState(gameObject.animationState.data);
const skeleton = new Skeleton(gameObject.skeleton.data);
const clipper = this.clipping ? new SkeletonClipping() : void 0;
const data = skeleton.data;
if (this.skins.length > 0) {
let customSkin = new Skin("custom-skin");
for (const skinName of this.skins) {
const skin = data.findSkin(skinName);
if (skin == null)
continue;
customSkin.addSkin(skin);
}
skeleton.setSkin(customSkin);
}
skeleton.setToSetupPose();
const animation = this.animation != null ? data.findAnimation(this.animation) : null;
if (animation == null) {
skeleton.updateWorldTransform(2 /* update */);
const bounds = skeleton.getBoundsRect(clipper);
return bounds.width == Number.NEGATIVE_INFINITY ? { x: 0, y: 0, width: 0, height: 0 } : bounds;
} else {
let minX = Number.POSITIVE_INFINITY, minY = Number.POSITIVE_INFINITY, maxX = Number.NEGATIVE_INFINITY, maxY = Number.NEGATIVE_INFINITY;
animationState.clearTracks();
animationState.setAnimationWith(0, animation, false);
const steps = Math.max(animation.duration / this.timeStep, 1);
for (let i = 0; i < steps; i++) {
const delta = i > 0 ? this.timeStep : 0;
animationState.update(delta);
animationState.apply(skeleton);
skeleton.update(delta);
skeleton.updateWorldTransform(2 /* update */);
const bounds2 = skeleton.getBoundsRect(clipper);
minX = Math.min(minX, bounds2.x);
minY = Math.min(minY, bounds2.y);
maxX = Math.max(maxX, bounds2.x + bounds2.width);
maxY = Math.max(maxY, bounds2.y + bounds2.height);
}
const bounds = {
x: minX,
y: minY,
width: maxX - minX,
height: maxY - minY
};
return bounds.width == Number.NEGATIVE_INFINITY ? { x: 0, y: 0, width: 0, height: 0 } : bounds;
}
}
};
var SpineGameObject = class extends DepthMixin(
OriginMixin(
ComputedSizeMixin(
FlipMixin(
ScrollFactorMixin(
TransformMixin(VisibleMixin(AlphaMixin(BaseSpineGameObject)))
)
)
)
)
) {
constructor(scene, plugin, x, y, dataKey, atlasKey, boundsProvider = new SetupPoseBoundsProvider()) {
super(scene, window.SPINE_GAME_OBJECT_TYPE ? window.SPINE_GAME_OBJECT_TYPE : SPINE_GAME_OBJECT_TYPE);
this.plugin = plugin;
this.boundsProvider = boundsProvider;
this.setPosition(x, y);
this.premultipliedAlpha = this.plugin.isAtlasPremultiplied(atlasKey);
this.skeleton = this.plugin.createSkeleton(dataKey, atlasKey);
this.animationStateData = new AnimationStateData(this.skeleton.data);
this.animationState = new AnimationState(this.animationStateData);
this.skeleton.updateWorldTransform(2 /* update */);
this.updateSize();
}
blendMode = -1;
skeleton;
animationStateData;
animationState;
beforeUpdateWorldTransforms = () => {
};
afterUpdateWorldTransforms = () => {
};
premultipliedAlpha = false;
updateSize() {
if (!this.skeleton)
return;
let bounds = this.boundsProvider.calculateBounds(this);
let self = this;
self.width = bounds.width;
self.height = bounds.height;
this.displayOriginX = -bounds.x;
this.displayOriginY = -bounds.y;
}
/** Converts a point from the skeleton coordinate system to the Phaser world coordinate system. */
skeletonToPhaserWorldCoordinates(point) {
let transform = this.getWorldTransformMatrix();
let a = transform.a, b = transform.b, c = transform.c, d = transform.d, tx = transform.tx, ty = transform.ty;
let x = point.x;
let y = point.y;
point.x = x * a + y * c + tx;
point.y = x * b + y * d + ty;
}
/** Converts a point from the Phaser world coordinate system to the skeleton coordinate system. */
phaserWorldCoordinatesToSkeleton(point) {
let transform = this.getWorldTransformMatrix();
transform = transform.invert();
let a = transform.a, b = transform.b, c = transform.c, d = transform.d, tx = transform.tx, ty = transform.ty;
let x = point.x;
let y = point.y;
point.x = x * a + y * c + tx;
point.y = x * b + y * d + ty;
}
/** Converts a point from the Phaser world coordinate system to the bone's local coordinate system. */
phaserWorldCoordinatesToBone(point, bone) {
this.phaserWorldCoordinatesToSkeleton(point);
if (bone.parent) {
bone.parent.worldToLocal(point);
} else {
bone.worldToLocal(point);
}
}
/**
* Updates the {@link AnimationState}, applies it to the {@link Skeleton}, then updates the world transforms of all bones.
* @param delta The time delta in milliseconds
*/
updatePose(delta) {
this.animationState.update(delta / 1e3);
this.animationState.apply(this.skeleton);
this.beforeUpdateWorldTransforms(this);
this.skeleton.update(delta / 1e3);
this.skeleton.updateWorldTransform(2 /* update */);
this.afterUpdateWorldTransforms(this);
}
preUpdate(time, delta) {
if (!this.skeleton || !this.animationState)
return;
this.updatePose(delta);
}
preDestroy() {
}
willRender(camera) {
var GameObjectRenderMask = 15;
var result = !this.skeleton || !(GameObjectRenderMask !== this.renderFlags || this.cameraFilter !== 0 && this.cameraFilter & camera.id);
if (!this.visible)
result = false;
if (!result && this.parentContainer && this.plugin.webGLRenderer) {
var sceneRenderer = this.plugin.webGLRenderer;
if (this.plugin.gl && this.plugin.phaserRenderer instanceof Phaser.Renderer.WebGL.WebGLRenderer && sceneRenderer.batcher.isDrawing) {
sceneRenderer.end();
this.plugin.phaserRenderer.pipelines.rebind();
}
}
return result;
}
renderWebGL(renderer, src, camera, parentMatrix) {
if (!this.skeleton || !this.animationState || !this.plugin.webGLRenderer)
return;
let sceneRenderer = this.plugin.webGLRenderer;
if (renderer.newType) {
renderer.pipelines.clear();
sceneRenderer.begin();
}
camera.addToRenderList(src);
let transform = Phaser.GameObjects.GetCalcMatrix(
src,
camera,
parentMatrix
).calc;
let a = transform.a, b = transform.b, c = transform.c, d = transform.d, tx = transform.tx, ty = transform.ty;
sceneRenderer.drawSkeleton(
this.skeleton,
this.premultipliedAlpha,
-1,
-1,
(vertices, numVertices, stride) => {
for (let i = 0; i < numVertices; i += stride) {
let vx = vertices[i];
let vy = vertices[i + 1];
vertices[i] = vx * a + vy * c + tx;
vertices[i + 1] = vx * b + vy * d + ty;
}
}
);
if (!renderer.nextTypeMatch) {
sceneRenderer.end();
renderer.pipelines.rebind();
}
}
renderCanvas(renderer, src, camera, parentMatrix) {
if (!this.skeleton || !this.animationState || !this.plugin.canvasRenderer)
return;
let context = renderer.currentContext;
let skeletonRenderer = this.plugin.canvasRenderer;
skeletonRenderer.ctx = context;
camera.addToRenderList(src);
let transform = Phaser.GameObjects.GetCalcMatrix(
src,
camera,
parentMatrix
).calc;
let skeleton = this.skeleton;
skeleton.x = transform.tx;
skeleton.y = transform.ty;
skeleton.scaleX = transform.scaleX;
skeleton.scaleY = transform.scaleY;
let root = skeleton.getRootBone();
root.rotation = -MathUtils.radiansToDegrees * transform.rotationNormalized;
this.skeleton.updateWorldTransform(2 /* update */);
context.save();
skeletonRenderer.draw(skeleton);
context.restore();
}
};
// spine-canvas/src/CanvasTexture.ts
var CanvasTexture = class extends Texture {
constructor(image) {
super(image);
}
setFilters(minFilter, magFilter) {
}
setWraps(uWrap, vWrap) {
}
dispose() {
}
};
// spine-canvas/src/SkeletonRenderer.ts
var worldVertices = Utils.newFloatArray(8);
var _SkeletonRenderer2 = class {
ctx;
triangleRendering = false;
debugRendering = false;
vertices = Utils.newFloatArray(8 * 1024);
tempColor = new Color();
constructor(context) {
this.ctx = context;
}
draw(skeleton) {
if (this.triangleRendering)
this.drawTriangles(skeleton);
else
this.drawImages(skeleton);
}
drawImages(skeleton) {
let ctx = this.ctx;
let color = this.tempColor;
let skeletonColor = skeleton.color;
let drawOrder = skeleton.drawOrder;
if (this.debugRendering)
ctx.strokeStyle = "green";
for (let i = 0, n = drawOrder.length; i < n; i++) {
let slot = drawOrder[i];
let bone = slot.bone;
if (!bone.active)
continue;
let attachment = slot.getAttachment();
if (!(attachment instanceof RegionAttachment))
continue;
attachment.computeWorldVertices(slot, worldVertices, 0, 2);
let region = attachment.region;
let image = region.texture.getImage();
let slotColor = slot.color;
let regionColor = attachment.color;
color.set(
skeletonColor.r * slotColor.r * regionColor.r,
skeletonColor.g * slotColor.g * regionColor.g,
skeletonColor.b * slotColor.b * regionColor.b,
skeletonColor.a * slotColor.a * regionColor.a
);
ctx.save();
ctx.transform(bone.a, bone.c, bone.b, bone.d, bone.worldX, bone.worldY);
ctx.translate(attachment.offset[0], attachment.offset[1]);
ctx.rotate(attachment.rotation * Math.PI / 180);
let atlasScale = attachment.width / region.originalWidth;
ctx.scale(atlasScale * attachment.scaleX, atlasScale * attachment.scaleY);
let w = region.width, h = region.height;
ctx.translate(w / 2, h / 2);
if (attachment.region.degrees == 90) {
let t = w;
w = h;
h = t;
ctx.rotate(-Math.PI / 2);
}
ctx.scale(1, -1);
ctx.translate(-w / 2, -h / 2);
ctx.globalAlpha = color.a;
ctx.drawImage(image, image.width * region.u, image.height * region.v, w, h, 0, 0, w, h);
if (this.debugRendering)
ctx.strokeRect(0, 0, w, h);
ctx.restore();
}
}
drawTriangles(skeleton) {
let ctx = this.ctx;
let color = this.tempColor;
let skeletonColor = skeleton.color;
let drawOrder = skeleton.drawOrder;
let blendMode = null;
let vertices = this.vertices;
let triangles = null;
for (let i = 0, n = drawOrder.length; i < n; i++) {
let slot = drawOrder[i];
let attachment = slot.getAttachment();
let texture;
let region;
if (attachment instanceof RegionAttachment) {
let regionAttachment = attachment;
vertices = this.computeRegionVertices(slot, regionAttachment, false);
triangles = _SkeletonRenderer2.QUAD_TRIANGLES;
texture = regionAttachment.region.texture.getImage();
} else if (attachment instanceof MeshAttachment) {
let mesh = attachment;
vertices = this.computeMeshVertices(slot, mesh, false);
triangles = mesh.triangles;
texture = mesh.region.texture.getImage();
} else
continue;
if (texture) {
if (slot.data.blendMode != blendMode)
blendMode = slot.data.blendMode;
let slotColor = slot.color;
let attachmentColor = attachment.color;
color.set(
skeletonColor.r * slotColor.r * attachmentColor.r,
skeletonColor.g * slotColor.g * attachmentColor.g,
skeletonColor.b * slotColor.b * attachmentColor.b,
skeletonColor.a * slotColor.a * attachmentColor.a
);
ctx.globalAlpha = color.a;
for (var j = 0; j < triangles.length; j += 3) {
let t1 = triangles[j] * 8, t2 = triangles[j + 1] * 8, t3 = triangles[j + 2] * 8;
let x0 = vertices[t1], y0 = vertices[t1 + 1], u0 = vertices[t1 + 6], v0 = vertices[t1 + 7];
let x1 = vertices[t2], y1 = vertices[t2 + 1], u1 = vertices[t2 + 6], v1 = vertices[t2 + 7];
let x2 = vertices[t3], y2 = vertices[t3 + 1], u2 = vertices[t3 + 6], v2 = vertices[t3 + 7];
this.drawTriangle(texture, x0, y0, u0, v0, x1, y1, u1, v1, x2, y2, u2, v2);
if (this.debugRendering) {
ctx.strokeStyle = "green";
ctx.beginPath();
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.lineTo(x0, y0);
ctx.stroke();
}
}
}
}
this.ctx.globalAlpha = 1;
}
// Adapted from http://extremelysatisfactorytotalitarianism.com/blog/?p=2120
// Apache 2 licensed
drawTriangle(img, x0, y0, u0, v0, x1, y1, u1, v1, x2, y2, u2, v2) {
let ctx = this.ctx;
const width = img.width - 1;
const height = img.height - 1;
u0 *= width;
v0 *= height;
u1 *= width;
v1 *= height;
u2 *= width;
v2 *= height;
ctx.beginPath();
ctx.moveTo(x0, y0);
ctx.lineTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.closePath();
x1 -= x0;
y1 -= y0;
x2 -= x0;
y2 -= y0;
u1 -= u0;
v1 -= v0;
u2 -= u0;
v2 -= v0;
let det = u1 * v2 - u2 * v1;
if (det == 0)
return;
det = 1 / det;
const a = (v2 * x1 - v1 * x2) * det;
const b = (v2 * y1 - v1 * y2) * det;
const c = (u1 * x2 - u2 * x1) * det;
const d = (u1 * y2 - u2 * y1) * det;
const e = x0 - a * u0 - c * v0;
const f = y0 - b * u0 - d * v0;
ctx.save();
ctx.transform(a, b, c, d, e, f);
ctx.clip();
ctx.drawImage(img, 0, 0);
ctx.restore();
}
computeRegionVertices(slot, region, pma) {
let skeletonColor = slot.bone.skeleton.color;
let slotColor = slot.color;
let regionColor = region.color;
let alpha = skeletonColor.a * slotColor.a * regionColor.a;
let multiplier = pma ? alpha : 1;
let color = this.tempColor;
color.set(
skeletonColor.r * slotColor.r * regionColor.r * multiplier,
skeletonColor.g * slotColor.g * regionColor.g * multiplier,
skeletonColor.b * slotColor.b * regionColor.b * multiplier,
alpha
);
region.computeWorldVertices(slot, this.vertices, 0, _SkeletonRenderer2.VERTEX_SIZE);
let vertices = this.vertices;
let uvs = region.uvs;
vertices[RegionAttachment.C1R] = color.r;
vertices[RegionAttachment.C1G] = color.g;
vertices[RegionAttachment.C1B] = color.b;
vertices[RegionAttachment.C1A] = color.a;
vertices[RegionAttachment.U1] = uvs[0];
vertices[RegionAttachment.V1] = uvs[1];
vertices[RegionAttachment.C2R] = color.r;
vertices[RegionAttachment.C2G] = color.g;
vertices[RegionAttachment.C2B] = color.b;
vertices[RegionAttachment.C2A] = color.a;
vertices[RegionAttachment.U2] = uvs[2];
vertices[RegionAttachment.V2] = uvs[3];
vertices[RegionAttachment.C3R] = color.r;
vertices[RegionAttachment.C3G] = color.g;
vertices[RegionAttachment.C3B] = color.b;
vertices[RegionAttachment.C3A] = color.a;
vertices[RegionAttachment.U3] = uvs[4];
vertices[RegionAttachment.V3] = uvs[5];
vertices[RegionAttachment.C4R] = color.r;
vertices[RegionAttachment.C4G] = color.g;
vertices[RegionAttachment.C4B] = color.b;
vertices[RegionAttachment.C4A] = color.a;
vertices[RegionAttachment.U4] = uvs[6];
vertices[RegionAttachment.V4] = uvs[7];
return vertices;
}
computeMeshVertices(slot, mesh, pma) {
let skeletonColor = slot.bone.skeleton.color;
let slotColor = slot.color;
let regionColor = mesh.color;
let alpha = skeletonColor.a * slotColor.a * regionColor.a;
let multiplier = pma ? alpha : 1;
let color = this.tempColor;
color.set(
skeletonColor.r * slotColor.r * regionColor.r * multiplier,
skeletonColor.g * slotColor.g * regionColor.g * multiplier,
skeletonColor.b * slotColor.b * regionColor.b * multiplier,
alpha
);
let vertexCount = mesh.worldVerticesLength / 2;
let vertices = this.vertices;
if (vertices.length < mesh.worldVerticesLength)
this.vertices = vertices = Utils.newFloatArray(mesh.worldVerticesLength);
mesh.computeWorldVertices(slot, 0, mesh.worldVerticesLength, vertices, 0, _SkeletonRenderer2.VERTEX_SIZE);
let uvs = mesh.uvs;
for (let i = 0, u = 0, v = 2; i < vertexCount; i++) {
vertices[v++] = color.r;
vertices[v++] = color.g;
vertices[v++] = color.b;
vertices[v++] = color.a;
vertices[v++] = uvs[u++];
vertices[v++] = uvs[u++];
v += 2;
}
return vertices;
}
};
var SkeletonRenderer2 = _SkeletonRenderer2;
__publicField(SkeletonRenderer2, "QUAD_TRIANGLES", [0, 1, 2, 2, 3, 0]);
__publicField(SkeletonRenderer2, "VERTEX_SIZE", 2 + 2 + 4);
// spine-phaser-v3/src/SpinePlugin.ts
var _SpinePlugin = class extends Phaser2.Plugins.ScenePlugin {
game;
isWebGL;
gl;
get webGLRenderer() {
return _SpinePlugin.gameWebGLRenderer;
}
canvasRenderer;
phaserRenderer;
skeletonDataCache;
atlasCache;
constructor(scene, pluginManager, pluginKey) {
super(scene, pluginManager, pluginKey);
this.game = pluginManager.game;
this.isWebGL = this.game.config.renderType === 2;
this.gl = this.isWebGL ? this.game.renderer.gl : null;
this.phaserRenderer = this.game.renderer;
this.canvasRenderer = null;
this.skeletonDataCache = this.game.cache.addCustom(SPINE_SKELETON_FILE_CACHE_KEY);
this.atlasCache = this.game.cache.addCustom(SPINE_ATLAS_CACHE_KEY);
let skeletonJsonFileCallback = function(key, url, xhrSettings) {
let file = new SpineSkeletonDataFile(this, key, url, SpineSkeletonDataFileType.json, xhrSettings);
this.addFile(file.files);
return this;
};
pluginManager.registerFileType("spineJson", skeletonJsonFileCallback, scene);
let skeletonBinaryFileCallback = function(key, url, xhrSettings) {
let file = new SpineSkeletonDataFile(this, key, url, SpineSkeletonDataFileType.binary, xhrSettings);
this.addFile(file.files);
return this;
};
pluginManager.registerFileType("spineBinary", skeletonBinaryFileCallback, scene);
let atlasFileCallback = function(key, url, premultipliedAlpha, xhrSettings) {
let file = new SpineAtlasFile(this, key, url, premultipliedAlpha, xhrSettings);
this.addFile(file.files);
return this;
};
pluginManager.registerFileType("spineAtlas", atlasFileCallback, scene);
let addSpineGameObject = function(x, y, dataKey, atlasKey, boundsProvider) {
if (this.scene.sys.renderer instanceof Phaser2.Renderer.WebGL.WebGLRenderer) {
this.scene.sys.renderer.pipelines.clear();
}
const spinePlugin = this.scene.sys[pluginKey];
let gameObject = new SpineGameObject(this.scene, spinePlugin, x, y, dataKey, atlasKey, boundsProvider);
this.displayList.add(gameObject);
this.updateList.add(gameObject);
if (this.scene.sys.renderer instanceof Phaser2.Renderer.WebGL.WebGLRenderer) {
this.scene.sys.renderer.pipelines.rebind();
}
return gameObject;
};
let makeSpineGameObject = function(config, addToScene = false) {
if (this.scene.sys.renderer instanceof Phaser2.Renderer.WebGL.WebGLRenderer) {
this.scene.sys.renderer.pipelines.clear();
}
let x = config.x ? config.x : 0;
let y = config.y ? config.y : 0;
let boundsProvider = config.boundsProvider ? config.boundsProvider : void 0;
const spinePlugin = this.scene.sys[pluginKey];
let gameObject = new SpineGameObject(this.scene, spinePlugin, x, y, config.dataKey, config.atlasKey, boundsProvider);
if (addToScene !== void 0) {
config.add = addToScene;
}
if (this.scene.sys.renderer instanceof Phaser2.Renderer.WebGL.WebGLRenderer) {
this.scene.sys.renderer.pipelines.rebind();
}
return Phaser2.GameObjects.BuildGameObject(this.scene, gameObject, config);
};
pluginManager.registerGameObject(window.SPINE_GAME_OBJECT_TYPE ? window.SPINE_GAME_OBJECT_TYPE : SPINE_GAME_OBJECT_TYPE, addSpineGameObject, makeSpineGameObject);
}
boot() {
Skeleton.yDown = true;
if (this.isWebGL) {
if (!_SpinePlugin.gameWebGLRenderer) {
_SpinePlugin.gameWebGLRenderer = new SceneRenderer(this.game.renderer.canvas, this.gl, true);
}
this.onResize();
this.game.scale.on(Phaser2.Scale.Events.RESIZE, this.onResize, this);
} else {
if (!this.canvasRenderer) {
this.canvasRenderer = new SkeletonRenderer2(this.scene.sys.context);
}
}
var eventEmitter = this.systems.events;
eventEmitter.once("shutdown", this.shutdown, this);
eventEmitter.once("destroy", this.destroy, this);
this.game.events.once("destroy", this.gameDestroy, this);
}
onResize() {
var phaserRenderer = this.game.renderer;
var sceneRenderer = this.webGLRenderer;
if (phaserRenderer && sceneRenderer) {
var viewportWidth = phaserRenderer.width;
var viewportHeight = phaserRenderer.height;
sceneRenderer.camera.position.x = viewportWidth / 2;
sceneRenderer.camera.position.y = viewportHeight / 2;
sceneRenderer.camera.up.y = -1;
sceneRenderer.camera.direction.z = 1;
sceneRenderer.camera.setViewport(viewportWidth, viewportHeight);
}
}
shutdown() {
this.systems.events.off("shutdown", this.shutdown, this);
if (this.isWebGL) {
this.game.scale.off(Phaser2.Scale.Events.RESIZE, this.onResize, this);
}
}
destroy() {
this.shutdown();
}
gameDestroy() {
this.pluginManager.removeGameObject(window.SPINE_GAME_OBJECT_TYPE ? window.SPINE_GAME_OBJECT_TYPE : SPINE_GAME_OBJECT_TYPE, true, true);
if (this.webGLRenderer)
this.webGLRenderer.dispose();
_SpinePlugin.gameWebGLRenderer = null;
}
/** Returns the TextureAtlas instance for the given key */
getAtlas(atlasKey) {
let atlas;
if (this.atlasCache.exists(atlasKey)) {
atlas = this.atlasCache.get(atlasKey);
} else {
let atlasFile = this.game.cache.text.get(atlasKey);
atlas = new TextureAtlas(atlasFile.data);
if (this.isWebGL) {
let gl = this.gl;
const phaserUnpackPmaValue = gl.getParameter(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL);
if (phaserUnpackPmaValue)
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, false);
for (let atlasPage of atlas.pages) {
atlasPage.setTexture(new GLTexture(gl, this.game.textures.get(atlasKey + "!" + atlasPage.name).getSourceImage(), false));
}
if (phaserUnpackPmaValue)
gl.pixelStorei(gl.UNPACK_PREMULTIPLY_ALPHA_WEBGL, true);
} else {
for (let atlasPage of atlas.pages) {
atlasPage.setTexture(new CanvasTexture(this.game.textures.get(atlasKey + "!" + atlasPage.name).getSourceImage()));
}
}
this.atlasCache.add(atlasKey, atlas);
}
return atlas;
}
/** Returns whether the TextureAtlas uses premultiplied alpha */
isAtlasPremultiplied(atlasKey) {
let atlasFile = this.game.cache.text.get(atlasKey);
if (!atlasFile)
return false;
return atlasFile.premultipliedAlpha;
}
/** Returns the SkeletonData instance for the given data and atlas key */
getSkeletonData(dataKey, atlasKey) {
const atlas = this.getAtlas(atlasKey);
const combinedKey = dataKey + atlasKey;
let skeletonData;
if (this.skeletonDataCache.exists(combinedKey)) {
skeletonData = this.skeletonDataCache.get(combinedKey);
} else {
if (this.game.cache.json.exists(dataKey)) {
let jsonFile = this.game.cache.json.get(dataKey);
let json = new SkeletonJson(new AtlasAttachmentLoader(atlas));
skeletonData = json.readSkeletonData(jsonFile);
} else {
let binaryFile = this.game.cache.binary.get(dataKey);
let binary = new SkeletonBinary(new AtlasAttachmentLoader(atlas));
skeletonData = binary.readSkeletonData(new Uint8Array(binaryFile));
}
this.skeletonDataCache.add(combinedKey, skeletonData);
}
return skeletonData;
}
/** Creates a new Skeleton instance from the data and atlas. */
createSkeleton(dataKey, atlasKey) {
return new Skeleton(this.getSkeletonData(dataKey, atlasKey));
}
};
var SpinePlugin = _SpinePlugin;
__publicField(SpinePlugin, "gameWebGLRenderer", null);
__publicField(SpinePlugin, "rendererId", 0);
var SpineSkeletonDataFileType = /* @__PURE__ */ ((SpineSkeletonDataFileType2) => {
SpineSkeletonDataFileType2[SpineSkeletonDataFileType2["json"] = 0] = "json";
SpineSkeletonDataFileType2[SpineSkeletonDataFileType2["binary"] = 1] = "binary";
return SpineSkeletonDataFileType2;
})(SpineSkeletonDataFileType || {});
var SpineSkeletonDataFile = class extends Phaser2.Loader.MultiFile {
constructor(loader, key, url, fileType, xhrSettings) {
if (typeof key !== "string") {
const config = key;
key = config.key;
url = config.url;
fileType = config.type === "spineJson" ? 0 /* json */ : 1 /* binary */;
xhrSettings = config.xhrSettings;
}
let file = null;
let isJson = fileType == 0 /* json */;
if (isJson) {
file = new Phaser2.Loader.FileTypes.JSONFile(loader, {
key,
url,
extension: "json",
xhrSettings
});
} else {
file = new Phaser2.Loader.FileTypes.BinaryFile(loader, {
key,
url,
extension: "skel",
xhrSettings
});
}
super(loader, SPINE_SKELETON_DATA_FILE_TYPE, key, [file]);
this.fileType = fileType;
}
onFileComplete(file) {
this.pending--;
}
addToCache() {
if (this.isReadyToProcess())
this.files[0].addToCache();
}
};
var SpineAtlasFile = class extends Phaser2.Loader.MultiFile {
constructor(loader, key, url, premultipliedAlpha, xhrSettings) {
if (typeof key !== "string") {
const config = key;
key = config.key;
url = config.url;
premultipliedAlpha = config.premultipliedAlpha;
xhrSettings = config.xhrSettings;
}
super(loader, SPINE_ATLAS_FILE_TYPE, key, [
new Phaser2.Loader.FileTypes.TextFile(loader, {
key,
url,
xhrSettings,
extension: "atlas"
})
]);
this.premultipliedAlpha = premultipliedAlpha;
}
onFileComplete(file) {
if (this.files.indexOf(file) != -1) {
this.pending--;
if (file.type == "text") {
var lines = file.data.split(/\r\n|\r|\n/);
let textures = [];
textures.push(lines[0]);
for (var t = 1; t < lines.length; t++) {
var line = lines[t];
if (line.trim() === "" && t < lines.length - 1) {
line = lines[t + 1];
textures.push(line);
}
}
let basePath = file.src.match(/^.*\//) ?? "";
for (var i = 0; i < textures.length; i++) {
var url = basePath + textures[i];
var key = file.key + "!" + textures[i];
var image = new Phaser2.Loader.FileTypes.ImageFile(this.loader, key, url);
if (!this.loader.keyExists(image)) {
this.addToMultiFile(image);
this.loader.addFile(image);
}
}
}
}
}
addToCache() {
if (this.isReadyToProcess()) {
let textureManager = this.loader.textureManager;
for (let file of this.files) {
if (file.type == "image") {
if (!textureManager.exists(file.key)) {
textureManager.addImage(file.key, file.data);
}
} else {
this.premultipliedAlpha = this.premultipliedAlpha ?? (file.data.indexOf("pma: true") >= 0 || file.data.indexOf("pma:true") >= 0);
file.data = {
data: file.data,
premultipliedAlpha: this.premultipliedAlpha
};
file.addToCache();
}
}
}
}
};
// spine-phaser-v3/src/index.ts
window.spine = { SpinePlugin };
window["spine.SpinePlugin"] = SpinePlugin;
return __toCommonJS(src_exports);
})();
//# sourceMappingURL=spine-phaser-v3.js.map