561 lines
19 KiB
C++

// Copyright 2016 Chris Conway (Koderz). All Rights Reserved.
#include "RuntimeMeshComponentPluginPrivatePCH.h"
#include "RuntimeMeshLibrary.h"
#include "MessageLog.h"
#include "UObjectToken.h"
#include "StaticMeshResources.h"
#include "TessellationUtilities.h"
#include "RuntimeMeshBuilder.h"
#include "RuntimeMeshComponent.h"
#define LOCTEXT_NAMESPACE "RuntimeMeshLibrary"
URuntimeMeshLibrary::URuntimeMeshLibrary(const FObjectInitializer& ObjectInitializer)
: Super(ObjectInitializer)
{
}
void URuntimeMeshLibrary::ConvertQuadToTriangles(TArray<int32>& Triangles, int32 Vert0, int32 Vert1, int32 Vert2, int32 Vert3)
{
Triangles.Add(Vert0);
Triangles.Add(Vert1);
Triangles.Add(Vert3);
Triangles.Add(Vert1);
Triangles.Add(Vert2);
Triangles.Add(Vert3);
}
void URuntimeMeshLibrary::CreateGridMeshTriangles(int32 NumX, int32 NumY, bool bWinding, TArray<int32>& Triangles)
{
Triangles.Reset();
if (NumX >= 2 && NumY >= 2)
{
// Build Quads
for (int XIdx = 0; XIdx < NumX - 1; XIdx++)
{
for (int YIdx = 0; YIdx < NumY - 1; YIdx++)
{
const int32 I0 = (XIdx + 0)*NumY + (YIdx + 0);
const int32 I1 = (XIdx + 1)*NumY + (YIdx + 0);
const int32 I2 = (XIdx + 1)*NumY + (YIdx + 1);
const int32 I3 = (XIdx + 0)*NumY + (YIdx + 1);
if (bWinding)
{
ConvertQuadToTriangles(Triangles, I0, I1, I2, I3);
}
else
{
ConvertQuadToTriangles(Triangles, I0, I3, I2, I1);
}
}
}
}
}
void URuntimeMeshLibrary::CreateBoxMesh(FVector BoxRadius, TArray<FVector>& Vertices, TArray<int32>& Triangles, TArray<FVector>& Normals, TArray<FVector2D>& UVs, TArray<FRuntimeMeshTangent>& Tangents)
{
// Generate verts
FVector BoxVerts[8];
BoxVerts[0] = FVector(-BoxRadius.X, BoxRadius.Y, BoxRadius.Z);
BoxVerts[1] = FVector(BoxRadius.X, BoxRadius.Y, BoxRadius.Z);
BoxVerts[2] = FVector(BoxRadius.X, -BoxRadius.Y, BoxRadius.Z);
BoxVerts[3] = FVector(-BoxRadius.X, -BoxRadius.Y, BoxRadius.Z);
BoxVerts[4] = FVector(-BoxRadius.X, BoxRadius.Y, -BoxRadius.Z);
BoxVerts[5] = FVector(BoxRadius.X, BoxRadius.Y, -BoxRadius.Z);
BoxVerts[6] = FVector(BoxRadius.X, -BoxRadius.Y, -BoxRadius.Z);
BoxVerts[7] = FVector(-BoxRadius.X, -BoxRadius.Y, -BoxRadius.Z);
// Generate triangles (from quads)
Triangles.Reset();
const int32 NumVerts = 24; // 6 faces x 4 verts per face
Vertices.Reset();
Vertices.AddUninitialized(NumVerts);
Normals.Reset();
Normals.AddUninitialized(NumVerts);
Tangents.Reset();
Tangents.AddUninitialized(NumVerts);
Vertices[0] = BoxVerts[0];
Vertices[1] = BoxVerts[1];
Vertices[2] = BoxVerts[2];
Vertices[3] = BoxVerts[3];
ConvertQuadToTriangles(Triangles, 0, 1, 2, 3);
Normals[0] = Normals[1] = Normals[2] = Normals[3] = FVector(0, 0, 1);
Tangents[0] = Tangents[1] = Tangents[2] = Tangents[3] = FRuntimeMeshTangent(0.f, -1.f, 0.f);
Vertices[4] = BoxVerts[4];
Vertices[5] = BoxVerts[0];
Vertices[6] = BoxVerts[3];
Vertices[7] = BoxVerts[7];
ConvertQuadToTriangles(Triangles, 4, 5, 6, 7);
Normals[4] = Normals[5] = Normals[6] = Normals[7] = FVector(-1, 0, 0);
Tangents[4] = Tangents[5] = Tangents[6] = Tangents[7] = FRuntimeMeshTangent(0.f, -1.f, 0.f);
Vertices[8] = BoxVerts[5];
Vertices[9] = BoxVerts[1];
Vertices[10] = BoxVerts[0];
Vertices[11] = BoxVerts[4];
ConvertQuadToTriangles(Triangles, 8, 9, 10, 11);
Normals[8] = Normals[9] = Normals[10] = Normals[11] = FVector(0, 1, 0);
Tangents[8] = Tangents[9] = Tangents[10] = Tangents[11] = FRuntimeMeshTangent(-1.f, 0.f, 0.f);
Vertices[12] = BoxVerts[6];
Vertices[13] = BoxVerts[2];
Vertices[14] = BoxVerts[1];
Vertices[15] = BoxVerts[5];
ConvertQuadToTriangles(Triangles, 12, 13, 14, 15);
Normals[12] = Normals[13] = Normals[14] = Normals[15] = FVector(1, 0, 0);
Tangents[12] = Tangents[13] = Tangents[14] = Tangents[15] = FRuntimeMeshTangent(0.f, 1.f, 0.f);
Vertices[16] = BoxVerts[7];
Vertices[17] = BoxVerts[3];
Vertices[18] = BoxVerts[2];
Vertices[19] = BoxVerts[6];
ConvertQuadToTriangles(Triangles, 16, 17, 18, 19);
Normals[16] = Normals[17] = Normals[18] = Normals[19] = FVector(0, -1, 0);
Tangents[16] = Tangents[17] = Tangents[18] = Tangents[19] = FRuntimeMeshTangent(1.f, 0.f, 0.f);
Vertices[20] = BoxVerts[7];
Vertices[21] = BoxVerts[6];
Vertices[22] = BoxVerts[5];
Vertices[23] = BoxVerts[4];
ConvertQuadToTriangles(Triangles, 20, 21, 22, 23);
Normals[20] = Normals[21] = Normals[22] = Normals[23] = FVector(0, 0, -1);
Tangents[20] = Tangents[21] = Tangents[22] = Tangents[23] = FRuntimeMeshTangent(0.f, 1.f, 0.f);
// UVs
UVs.Reset();
UVs.AddUninitialized(NumVerts);
UVs[0] = UVs[4] = UVs[8] = UVs[12] = UVs[16] = UVs[20] = FVector2D(0.f, 0.f);
UVs[1] = UVs[5] = UVs[9] = UVs[13] = UVs[17] = UVs[21] = FVector2D(0.f, 1.f);
UVs[2] = UVs[6] = UVs[10] = UVs[14] = UVs[18] = UVs[22] = FVector2D(1.f, 1.f);
UVs[3] = UVs[7] = UVs[11] = UVs[15] = UVs[19] = UVs[23] = FVector2D(1.f, 0.f);
}
void FindVertOverlaps(int32 TestVertIndex, const IRuntimeMeshVerticesBuilder* Vertices, TArray<int32>& VertOverlaps)
{
// Check if Verts is empty or test is outside range
if (TestVertIndex < Vertices->Length())
{
const FVector TestVert = Vertices->GetPosition(TestVertIndex);
for (int32 VertIdx = 0; VertIdx < Vertices->Length(); VertIdx++)
{
// First see if we overlap, and smoothing groups are the same
if (TestVert.Equals(Vertices->GetPosition(VertIdx)))
{
// If it, so we are at least considered an 'overlap' for normal gen
VertOverlaps.Add(VertIdx);
}
}
}
}
void URuntimeMeshLibrary::CalculateTangentsForMesh(IRuntimeMeshVerticesBuilder* Vertices, const FRuntimeMeshIndicesBuilder* Triangles)
{
if (Vertices->Length() == 0) return;
// Number of triangles
const int32 NumTris = Triangles->TriangleLength();
// Number of verts
const int32 NumVerts = Vertices->Length();
// Map of vertex to triangles in Triangles array
TMultiMap<int32, int32> VertToTriMap;
// Map of vertex to triangles to consider for normal calculation
TMultiMap<int32, int32> VertToTriSmoothMap;
// Normal/tangents for each face
TArray<FVector> FaceTangentX, FaceTangentY, FaceTangentZ;
FaceTangentX.AddUninitialized(NumTris);
FaceTangentY.AddUninitialized(NumTris);
FaceTangentZ.AddUninitialized(NumTris);
// Iterate over triangles
for (int TriIdx = 0; TriIdx < NumTris; TriIdx++)
{
int32 CornerIndex[3];
FVector P[3];
for (int32 CornerIdx = 0; CornerIdx < 3; CornerIdx++)
{
// Find vert index (clamped within range)
int32 VertIndex = FMath::Min(Triangles->GetIndex((TriIdx * 3) + CornerIdx), NumVerts - 1);
CornerIndex[CornerIdx] = VertIndex;
P[CornerIdx] = Vertices->GetPosition(VertIndex);
// Find/add this vert to index buffer
TArray<int32> VertOverlaps;
FindVertOverlaps(VertIndex, Vertices, VertOverlaps);
// Remember which triangles map to this vert
VertToTriMap.AddUnique(VertIndex, TriIdx);
VertToTriSmoothMap.AddUnique(VertIndex, TriIdx);
// Also update map of triangles that 'overlap' this vert (ie don't match UV, but do match smoothing) and should be considered when calculating normal
for (int32 OverlapIdx = 0; OverlapIdx < VertOverlaps.Num(); OverlapIdx++)
{
// For each vert we overlap..
int32 OverlapVertIdx = VertOverlaps[OverlapIdx];
// Add this triangle to that vert
VertToTriSmoothMap.AddUnique(OverlapVertIdx, TriIdx);
// And add all of its triangles to us
TArray<int32> OverlapTris;
VertToTriMap.MultiFind(OverlapVertIdx, OverlapTris);
for (int32 OverlapTriIdx = 0; OverlapTriIdx < OverlapTris.Num(); OverlapTriIdx++)
{
VertToTriSmoothMap.AddUnique(VertIndex, OverlapTris[OverlapTriIdx]);
}
}
}
// Calculate triangle edge vectors and normal
const FVector Edge21 = P[1] - P[2];
const FVector Edge20 = P[0] - P[2];
const FVector TriNormal = (Edge21 ^ Edge20).GetSafeNormal();
// If we have UVs, use those to calc
if (Vertices->HasUVComponent(0))
{
const FVector2D T1 = Vertices->GetUV(CornerIndex[0]);
const FVector2D T2 = Vertices->GetUV(CornerIndex[1]);
const FVector2D T3 = Vertices->GetUV(CornerIndex[2]);
FMatrix ParameterToLocal(
FPlane(P[1].X - P[0].X, P[1].Y - P[0].Y, P[1].Z - P[0].Z, 0),
FPlane(P[2].X - P[0].X, P[2].Y - P[0].Y, P[2].Z - P[0].Z, 0),
FPlane(P[0].X, P[0].Y, P[0].Z, 0),
FPlane(0, 0, 0, 1)
);
FMatrix ParameterToTexture(
FPlane(T2.X - T1.X, T2.Y - T1.Y, 0, 0),
FPlane(T3.X - T1.X, T3.Y - T1.Y, 0, 0),
FPlane(T1.X, T1.Y, 1, 0),
FPlane(0, 0, 0, 1)
);
// Use InverseSlow to catch singular matrices. Inverse can miss this sometimes.
const FMatrix TextureToLocal = ParameterToTexture.Inverse() * ParameterToLocal;
FaceTangentX[TriIdx] = TextureToLocal.TransformVector(FVector(1, 0, 0)).GetSafeNormal();
FaceTangentY[TriIdx] = TextureToLocal.TransformVector(FVector(0, 1, 0)).GetSafeNormal();
}
else
{
FaceTangentX[TriIdx] = Edge20.GetSafeNormal();
FaceTangentY[TriIdx] = (FaceTangentX[TriIdx] ^ TriNormal).GetSafeNormal();
}
FaceTangentZ[TriIdx] = TriNormal;
}
// Arrays to accumulate tangents into
TArray<FVector> VertexTangentXSum, VertexTangentYSum, VertexTangentZSum;
VertexTangentXSum.AddZeroed(NumVerts);
VertexTangentYSum.AddZeroed(NumVerts);
VertexTangentZSum.AddZeroed(NumVerts);
// For each vertex..
for (int VertxIdx = 0; VertxIdx < Vertices->Length(); VertxIdx++)
{
// Find relevant triangles for normal
TArray<int32> SmoothTris;
VertToTriSmoothMap.MultiFind(VertxIdx, SmoothTris);
for (int i = 0; i < SmoothTris.Num(); i++)
{
int32 TriIdx = SmoothTris[i];
VertexTangentZSum[VertxIdx] += FaceTangentZ[TriIdx];
}
// Find relevant triangles for tangents
TArray<int32> TangentTris;
VertToTriMap.MultiFind(VertxIdx, TangentTris);
for (int i = 0; i < TangentTris.Num(); i++)
{
int32 TriIdx = TangentTris[i];
VertexTangentXSum[VertxIdx] += FaceTangentX[TriIdx];
VertexTangentYSum[VertxIdx] += FaceTangentY[TriIdx];
}
}
// Finally, normalize tangents and build output arrays
for (int VertxIdx = 0; VertxIdx < NumVerts; VertxIdx++)
{
FVector& TangentX = VertexTangentXSum[VertxIdx];
FVector& TangentY = VertexTangentYSum[VertxIdx];
FVector& TangentZ = VertexTangentZSum[VertxIdx];
TangentX.Normalize();
TangentZ.Normalize();
// Use Gram-Schmidt orthogonalization to make sure X is orth with Z
TangentX -= TangentZ * (TangentZ | TangentX);
TangentX.Normalize();
Vertices->SetTangents(VertxIdx, TangentX, TangentY, TangentZ);
}
}
void URuntimeMeshLibrary::CalculateTangentsForMesh(const TArray<FVector>& Vertices, const TArray<int32>& Triangles, const TArray<FVector2D>& UVs, TArray<FVector>& Normals, TArray<FRuntimeMeshTangent>& Tangents)
{
FRuntimeMeshComponentVerticesBuilder VerticesBuilder(const_cast<TArray<FVector>*>(&Vertices), &Normals, &Tangents, nullptr, const_cast<TArray<FVector2D>*>(&UVs));
FRuntimeMeshIndicesBuilder IndicesBuilder(const_cast<TArray<int32>*>(&Triangles));
CalculateTangentsForMesh(&VerticesBuilder, &IndicesBuilder);
}
void URuntimeMeshLibrary::GenerateTessellationIndexBuffer(const IRuntimeMeshVerticesBuilder* Vertices, const FRuntimeMeshIndicesBuilder* Indices, FRuntimeMeshIndicesBuilder* OutTessellationIndices)
{
TessellationUtilities::CalculateTessellationIndices(Vertices, Indices, OutTessellationIndices);
}
void URuntimeMeshLibrary::GenerateTessellationIndexBuffer(const TArray<FVector>& Vertices, const TArray<int32>& Triangles, const TArray<FVector2D>& UVs, TArray<FVector>& Normals, TArray<FRuntimeMeshTangent>& Tangents, TArray<int32>& OutTessTriangles)
{
FRuntimeMeshComponentVerticesBuilder VerticesBuilder(const_cast<TArray<FVector>*>(&Vertices), &Normals, &Tangents, nullptr, const_cast<TArray<FVector2D>*>(&UVs));
FRuntimeMeshIndicesBuilder IndicesBuilder(const_cast<TArray<int32>*>(&Triangles));
FRuntimeMeshIndicesBuilder OutIndicesBuilder(&OutTessTriangles);
GenerateTessellationIndexBuffer(&VerticesBuilder, &IndicesBuilder, &OutIndicesBuilder);
}
static int32 GetNewIndexForOldVertIndex(int32 MeshVertIndex, TMap<int32, int32>& MeshToSectionVertMap, const FPositionVertexBuffer* PosBuffer, const FStaticMeshVertexBuffer* VertBuffer, const FColorVertexBuffer* ColorBuffer, IRuntimeMeshVerticesBuilder* Vertices)
{
int32* NewIndexPtr = MeshToSectionVertMap.Find(MeshVertIndex);
if (NewIndexPtr != nullptr)
{
return *NewIndexPtr;
}
else
{
// Copy position
int32 SectionVertIndex = Vertices->MoveNextOrAdd();
Vertices->SetPosition(PosBuffer->VertexPosition(MeshVertIndex));
Vertices->SetNormal(VertBuffer->VertexTangentZ(MeshVertIndex));
Vertices->SetTangent(VertBuffer->VertexTangentX(MeshVertIndex));
if (ColorBuffer && ColorBuffer->GetNumVertices())
{
Vertices->SetColor(ColorBuffer->VertexColor(MeshVertIndex));
}
// copy all uv channels
for (uint32 Index = 0; Index < VertBuffer->GetNumTexCoords(); Index++)
{
Vertices->SetUV(Index, VertBuffer->GetVertexUV(MeshVertIndex, Index));
}
MeshToSectionVertMap.Add(MeshVertIndex, SectionVertIndex);
return SectionVertIndex;
}
}
void URuntimeMeshLibrary::GetSectionFromStaticMesh(UStaticMesh* InMesh, int32 LODIndex, int32 SectionIndex,
IRuntimeMeshVerticesBuilder* Vertices, FRuntimeMeshIndicesBuilder* Triangles, FRuntimeMeshIndicesBuilder* AdjacencyTriangles)
{
if (InMesh)
{
#if !WITH_EDITOR && (ENGINE_MAJOR_VERSION == 4 && ENGINE_MINOR_VERSION >= 13)
if (!InMesh->bAllowCPUAccess)
{
FMessageLog("PIE").Warning()
->AddToken(FTextToken::Create(LOCTEXT("GetSectionFromStaticMeshStart", "Calling GetSectionFromStaticMesh on")))
->AddToken(FUObjectToken::Create(InMesh))
->AddToken(FTextToken::Create(LOCTEXT("GetSectionFromStaticMeshEnd", "but 'Allow CPU Access' is not enabled. This is required for converting StaticMesh to RuntimeMeshComponent in cooked builds.")));
}
else
#endif
#if WITH_EDITOR || (ENGINE_MAJOR_VERSION == 4 && ENGINE_MINOR_VERSION >= 13)
if (InMesh->RenderData != nullptr && InMesh->RenderData->LODResources.IsValidIndex(LODIndex))
{
const FStaticMeshLODResources& LOD = InMesh->RenderData->LODResources[LODIndex];
if (LOD.Sections.IsValidIndex(SectionIndex))
{
// Empty output buffers
Vertices->Reset();
Triangles->Reset();
// Map from vert buffer for whole mesh to vert buffer for section of interest
TMap<int32, int32> MeshToSectionVertMap;
const FStaticMeshSection& Section = LOD.Sections[SectionIndex];
const uint32 OnePastLastIndex = Section.FirstIndex + Section.NumTriangles * 3;
FIndexArrayView Indices = LOD.IndexBuffer.GetArrayView();
// Iterate over section index buffer, copying verts as needed
for (uint32 i = Section.FirstIndex; i < OnePastLastIndex; i++)
{
uint32 MeshVertIndex = Indices[i];
// See if we have this vert already in our section vert buffer, and copy vert in if not
int32 SectionVertIndex = GetNewIndexForOldVertIndex(MeshVertIndex, MeshToSectionVertMap, &LOD.PositionVertexBuffer, &LOD.VertexBuffer, &LOD.ColorVertexBuffer, Vertices);
// Add to index buffer
Triangles->AddIndex(SectionVertIndex);
}
if (AdjacencyTriangles != nullptr)
{
AdjacencyTriangles->Reset();
// Adjacency indices use 12 per triangle instead of 3. So start position and length both need to be multiplied by 4
const uint32 SectionAdjacencyFirstIndex = Section.FirstIndex * 4;
const uint32 SectionAdjacencyOnePastLastIndex = SectionAdjacencyFirstIndex + Section.NumTriangles * (3 * 4);
FIndexArrayView AdjacencyIndices = LOD.AdjacencyIndexBuffer.GetArrayView();
// Iterate over section adjacency index buffer, copying any new verts as needed
for (uint32 i = SectionAdjacencyFirstIndex; i < SectionAdjacencyOnePastLastIndex; i++)
{
uint32 MeshVertIndex = AdjacencyIndices[i];
// See if we have this vert already in our section vert buffer, and copy vert in if not
int32 SectionVertIndex = GetNewIndexForOldVertIndex(MeshVertIndex, MeshToSectionVertMap, &LOD.PositionVertexBuffer, &LOD.VertexBuffer, &LOD.ColorVertexBuffer, Vertices);
// Add to index buffer
AdjacencyTriangles->AddIndex(SectionVertIndex);
}
}
}
}
#endif
}
}
void URuntimeMeshLibrary::GetSectionFromStaticMesh(UStaticMesh* InMesh, int32 LODIndex, int32 SectionIndex, TArray<FVector>& Vertices,
TArray<int32>& Triangles, TArray<FVector>& Normals, TArray<FVector2D>& UVs, TArray<FRuntimeMeshTangent>& Tangents)
{
FRuntimeMeshComponentVerticesBuilder VerticesBuilder(&Vertices, &Normals, &Tangents, nullptr, &UVs);
FRuntimeMeshIndicesBuilder IndicesBuilder(&Triangles);
GetSectionFromStaticMesh(InMesh, LODIndex, SectionIndex, &VerticesBuilder, &IndicesBuilder, nullptr);
}
void URuntimeMeshLibrary::CopyRuntimeMeshFromStaticMeshComponent(UStaticMeshComponent* StaticMeshComp, int32 LODIndex,
URuntimeMeshComponent* RuntimeMeshComp, bool bShouldCreateCollision)
{
#if ENGINE_MAJOR_VERSION == 4 && ENGINE_MINOR_VERSION >= 14
UStaticMesh* StaticMesh = StaticMeshComp->GetStaticMesh();
#else
UStaticMesh* StaticMesh = StaticMeshComp->StaticMesh;
#endif
if (StaticMeshComp != nullptr && StaticMesh != nullptr && RuntimeMeshComp != nullptr)
{
//// MESH DATA
// Make sure LOD index is valid
if (StaticMesh->RenderData == nullptr || !StaticMesh->RenderData->LODResources.IsValidIndex(LODIndex))
{
return;
}
// Get specified LOD
const FStaticMeshLODResources& LOD = StaticMesh->RenderData->LODResources[LODIndex];
#if ENGINE_MAJOR_VERSION == 4 && ENGINE_MINOR_VERSION >= 13
int32 NumSections = StaticMesh->GetNumSections(LODIndex);
#else
int32 NumSections = LOD.Sections.Num();
#endif
for (int32 SectionIndex = 0; SectionIndex < NumSections; SectionIndex++)
{
// Buffers for copying geom data
if (LOD.Sections.IsValidIndex(SectionIndex))
{
int32 NumUVChannels = LOD.GetNumTexCoords();
FRuntimeMeshIndicesBuilder AdjacencyTriangles;
if (NumUVChannels <= 1)
{
FRuntimeMeshPackedVerticesBuilder<FRuntimeMeshVertexSimple> Vertices;
FRuntimeMeshIndicesBuilder Triangles;
// Get geom data from static mesh
GetSectionFromStaticMesh(StaticMesh, LODIndex, SectionIndex, &Vertices, &Triangles, &AdjacencyTriangles);
// Create section using data
RuntimeMeshComp->CreateMeshSection(SectionIndex, *Vertices.GetVertices(), *Triangles.GetIndices(),
bShouldCreateCollision, EUpdateFrequency::Infrequent, ESectionUpdateFlags::MoveArrays);
}
else
{
FRuntimeMeshPackedVerticesBuilder<FRuntimeMeshVertexDualUV> Vertices;
FRuntimeMeshIndicesBuilder Triangles;
// Get geom data from static mesh
GetSectionFromStaticMesh(StaticMesh, LODIndex, SectionIndex, &Vertices, &Triangles, &AdjacencyTriangles);
// Create section using data
RuntimeMeshComp->CreateMeshSection(SectionIndex, *Vertices.GetVertices(), *Triangles.GetIndices(),
bShouldCreateCollision, EUpdateFrequency::Infrequent, ESectionUpdateFlags::MoveArrays);
}
}
}
//// SIMPLE COLLISION
// Clear any existing collision hulls
RuntimeMeshComp->ClearCollisionConvexMeshes();
if (StaticMesh->BodySetup != nullptr)
{
// Iterate over all convex hulls on static mesh..
const int32 NumConvex = StaticMesh->BodySetup->AggGeom.ConvexElems.Num();
for (int ConvexIndex = 0; ConvexIndex < NumConvex; ConvexIndex++)
{
// Copy convex verts to ProcMesh
FKConvexElem& MeshConvex = StaticMesh->BodySetup->AggGeom.ConvexElems[ConvexIndex];
RuntimeMeshComp->AddCollisionConvexMesh(MeshConvex.VertexData);
}
}
//// MATERIALS
for (int32 MatIndex = 0; MatIndex < StaticMeshComp->GetNumMaterials(); MatIndex++)
{
RuntimeMeshComp->SetMaterial(MatIndex, StaticMeshComp->GetMaterial(MatIndex));
}
}
}
#undef LOCTEXT_NAMESPACE